Vorcion 1

The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canada

LEARN MORE ABOUT ICFS AT ICF-MA.ORG

This engineering is only authorized for use by ICFMA Members. ©2021 All Rights Reserved.

The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canada

Introduction

Preface

Welcome to the First Edition of the ICFMA Prescriptive ICF Design Tables for Part 9 Buildings in Canada. The following guideline specifications were developed on behalf of the member companies of the Insulating Concrete Form Manufacturers Association (ICFMA) by Tacoma Engineers Inc. with offices in Ontario, Canada.

Objective

The objective of this manual is to provide Prescriptive Tables, Engineering Details and ICF product information that is code compliant for buildings constructed under Part 9 of the 2015 National Building Code of Canada. This manual provides code compliant information for Insulating Concrete Forms across each provincial region of Canada and contains a broad scope of residential designs that cover specific nuances of individual provincial regions. Each of the tables and designs cover the standard specifications for products manufactured or produced by members of the ICFMA. This guide is available in both English and French language versions.

Scope

Design information contained in this guide applies to below-grade and above-grade ICF reinforced concrete walls, both load bearing and non-load bearing, that make up the exterior and/or interior of Part 9 buildings that fall within the limitations of this guide. Floor design/connections and roof design/connections are not covered in this guide and must be designed by others. Any other building component not specifically named in this guide must be designed by others or follow prescriptive provisions contained in the applicable building code. Fire resistance characteristics of ICF/concrete walls are not covered in this guide, but are available from your ICFMA member company upon request.

Applicability

The tables in this manual are the property of the ICFMA and are specific to products offered by ICFMA member companies. The tables are not authorized for use by non-member ICF manufacturers or non-ICF methods of concrete forming. If specific questions arise about how to design or reference the tables in this manual of an ICFMA members product check with the technical department of that ICFMA member company. For example: Coursing height may vary between 12 inches and 18 inches depending on brand used. Horizontal tie spacing may vary between 6 inches and 12 inches. Product specific nuances may affect how the tables in the guide are used.

Design information contained in this document is limited to use in buildings described in Section 1 "Design Parameters" of the guide, including a maximum number of below-grade and above-grade stories as well as certain building size limitations. While the intent of this guide are the broadest applicability of Canada and it's individual provinces, there are some limits to applicability, including seismic response and wind loading. Building design may be limited by spans, deflection and aspect ratio among others.

CHECK ALL CONDITIONS THAT APPLY TO YOUR SITE AND BUILDING DESIGN TO ENSURE COMPATIBILITY WITH THE LIMITATIONS STATED IN SECTION 1 OF THIS GUIDE BEFORE PROCEEDING WITH ITS USE.

Engineered Design

These tables and specifications have been developed and reviewed against the 2015 National Building Code of Canada and CAN/ULC A23.3 by Tacoma Engineers. www.tacomaengineers.com Tables carry a stamp for all Canadian provinces. Check for a stamp applicable to your province before using or referring to the tables.

Review for code compliance will be carried out as building code and standards versions evolve. Check with your ICF member company for the most current guide version available.

Errata

All efforts have been made to create a publication free from errors. If ICFMA is notified of or discovers errors, errata will be published and posted on the ICFMA website at www.icf-ma.org.

Copyright

©2021 Insulating Concrete Form Manufacturers Association

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

The Insulating Concrete Form Manufacturers Association (ICFMA) is a not-for-profit trade organization and provides this publication solely for the continuing education of qualified building design and construction professionals. This publication should only be used by qualified professionals who possess all required license(s) in the authority having jurisdiction and who are competent to evaluate the significance and limitations of the information provided herein. Any qualified professional who choses to use any of the information found in this publication must accept total responsibility for the application of this information. Other readers should obtain assistance from a Qualified Professional before proceeding.

ICFMA and its members make no express or implied warranty with respect to this publication or any information contained herein. No warranty is made of merchantability or fitness for a particular purpose. ICFMA and its members disclaim any product liability (including without limitation any strict liability in tort) in connection with this publication or any information contained herein.

Acknowledgments

The Insulating Concrete Form Manufacturers Association wishes to express its thanks to the following individuals for their contributions and guidance throughout the process of creating this guide:

Ross Monsour - ICFMA Director

Robert Sculthorpe - Engineering Consultant

Nathan Proper - Tacoma Engineers

Morteza Mehrzadi – Tacoma Engineers

Jason Unruh - SuperForm ICF

Dennis Micoff - BuildBlock ICF

Francis Roma - Logix ICF

Keven Rector – Nudura ICF

Douglas Bennion - Quad-Lock ICF

Kelvin Doerr - Fox Blocks ICF

Brian Corder - BuildBlock ICF

Structural Design - National and Provincial Codes and Stamps

Tacoma Engineers has completed the structural design of the Insulating Concrete Forms Manufacturers Association (ICFMA) Prescriptive ICF Design Tables for Part 9 Buildings in Canada, in accordance with the 2015 National Building Code of Canada (NBCC).

This design guide is certified for all Canadian provinces, including:

Ontario, British Columbia, Alberta, Saskatchewan, Manitoba, Nova Scotia, Prince Edward Island, Quebec, Newfoundland and Labrador and New Brunswick.

In addition to the 2015 NBCC, this design guide has also been reviewed and is certified for conformance to the following building codes and regulations:

Ontario: Ontario Building Code as in Effect January 2020 (OBC 2012 r2020)

Nova Scotia: Nova Scotia Building Code as in Effect January 2020

Alberta: 2019 Alberta Building Code

British Columbia: 2018 British Columbia Building Code Manitoba: 2011 Manitoba Building Code as Amended in 2017

Saskatchewan: 2015 NBCC as Amended by The Uniform Building and Accessibility Standard Regulation in Saskatchewan on January 2018.

New Brunswick: 2015 NBCC Adopted by the Province of New Brunswick.

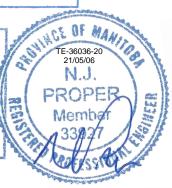
Prince Edward Island: 2015 NBCC Adopted by the Province of Prince Edward Island on March, 2021.

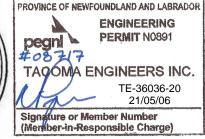
Newfoundland and Labrador: 2015 NBCC Adopted by Newfoundland and Labrador Regulation on January, 2019.

Quebec: 2015 NBCC that will be adopted by the province of Quebec

Note: This design guide may not be legally applicable in Quebec until NBCC 2015 is implemented.

This page includes the stamps and seals for these provinces. Due to space limitations, other pages are only stamped with an Ontario stamp.





Discipline

STRUČTURAL

21/05/06

THE ASSOCIATION OF
PROFESSIONAL ENGINEERS
OF THE PROVINCE OF
PRINCE EDWARD SLAND
VALID FOR THE YEAR 2021

N.J. POPER
NO. 1784

TE-36036-20
21/05/06

LICENSED
PROFESSIONAL ENGINEER
PROVINCE OF
PRINCE EDWARD ISLAND

Table of Contents

The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canada

Introduction3
Preface3
Objective3
Scope
Applicability
Engineered Design
Copyright
Acknowledgments
Structural Design - National and Provincial Codes and Stamps5 Design Limitation
1. Design Parameters
2. Construction
3. Concrete
4. Reinforcing Steel10
5. Above Grade and Below Grade Walls10
5.1 Distributed Reinforcing Steel
5.2 Shear Walls11
5.3 Concentrated Point Loads on Walls
5.4 Window and Door Openings
5.4.1 Lintels
5.5 Stair Openings
5.7 Laterally Unsupported Foundation Walls (Knee Wall) with Wood
Framing Above
Framing Above
8. Strip Footing
Details & Tables Index
Below & Above Grade Walls Details and Tables
Walls
Wall Configurations in a Building Without Walkout Basement22
Detail A.7.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof
Detail A.7.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof & Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof

Detail A.7.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof23
Wall Configurations in a Building with Walkout Basement
2nd Story Wood Frame Walls, Floor and Roof
and Roof
Lintel Details and Tables63
Concentrated Point Load Table90
Stair Opening Tables91
Laterally Supported Foundation Wall Detail and Table94
Laterally Unsupported Foundation Wall Detail and Table (Knee
Wall)
Ledger Connection Detail and Table97
Brick Ledge Detail and Table 98 Detail C. 2. Brick Ledge Connection 98 Detail C.3. xLerator Ledge Reinforcement 98
Footing Details and Tables 100 Detail F.1. Footing Dowel 100 Table F.2- Minimum Exterior Strip Footing Sizes Not Supporting Roof Loads 101 Table F.3- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads ≤ 2kPa 102 Table F.4- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads ≤4kPa 103
Appendix A: Equivalent Spectral Response Acceleration for ICF Walls, S _{a,ICF} 105

The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canada

Design Limitation

The design tables included in this manual were determined based on the parameters provided in this section. These tables cannot be used if the proposed construction does not meet all the parameters provided in this section or in the tables.

1. Design Parameters

- 1.1 These tables only apply to residential buildings conforming to Part 9 of the 2015 National Building Code of Canada (NBCC).
- 1.2 If the proposed construction does not meet the design or applicability of parameters noted herein, a local design professional shall be retained to prepare the design in accordance with applicable standards.
- 1.3 This design manual applies only to flat ICF walls (concrete core of uniform thickness). All walls must line up vertically.
- 1.4 In case this document conflicts with design codes, standards and building regulations, the code provisions shall apply.
 - The design and construction of all work shall conform to the latest editions of the NBCC, the local building code, local regulations and bylaws and the occupational health and safety act.
- These tables have been designed to resist gravity, wind and earthquake forces in accordance with the 2015 NBCC for the criteria indicated in the design limitations and in the design tables.
- 1.7 Design is limited to one (1) floor below grade and a maximum of two (2) stories above grade.
- 1.8 The maximum building dimensions are:

Building Area	300 m ²	3200 ft ²
Maximum Building Dimension	24.4 m	80 ft
Building Aspect Ratio (Length:Width)		
$S_{a,ICF} \le 0.2$	2.5:1	
S _{a,ICF} > 0.2	2:1	
Roof Clear Span	12.2 m	40 ft
Floor Clear Span	7.32 m	24 ft
Second Floor Wall Height	3.05 m	10 ft
Main Floor Wall Height	4.88 m	16 ft
Foundation Wall Height	3.66 m	12 ft

Note: $S_{\rm a,ICF}$ is the equivalent spectral response acceleration for ICF walls, provided in Appendix A.

1.9 The maximum unfactored gravity loads are:

4.0 kPa	84 psf
1.9 kPa	40 psf
0.7 kPa	15 psf
0.7 kPa	15 psf
23.6 kN/m ³	150 lb/ft ³
20.0 kN/m ³	128 lb/ft ³
7.32 m	24 ft
3.05 m	10 ft
4.88 m	16 ft
3.66 m	12 ft
	1.9 kPa 0.7 kPa 0.7 kPa 23.6 kN/m³ 20.0 kN/m³ 7.32 m 3.05 m 4.88 m

1.10 The lateral soil pressures against below grade walls are:

Area Surcharge (K _o = 0.5)	2.4 kPa	50 psf	
Equivalent Fluid Density of Soil ($K_o = 1.0$)	480 – 1200 kg/m³	30 – 75 pcf	

- 1.11 The wind loads are indicated in the design tables.
- 1.12 Seismic limits in wall analysis and design are based on $S_a(0.2)$ and $S_a(0.5)$ values. In order to simplify the tables, an equivalent seismic spectral response acceleration for ICF walls, $S_{a,ICF}$ is defined and provided in Appendix A. Equivalent spectral response, $S_{a,ICF}$ is used to calculate the seismic shear loads as given in following equation and the limits are indicated in shear wall tables.

$$V_{\text{seismic}} = F S_{\text{a,ICF}} W / R_{\text{d}} R_{\text{o}}$$

where F = max (F(0.5)) for soil type D or better = 1.47

1.13 The following peak ground acceleration (PGA) data was used in the analysis of below grade walls. These are the maximum associated values from Appendix C of the 2015 NBCC for the selected S_a(0.2) values.

Sa(0.2)	0.25	0.7	1.20	1.75
PGA	0.16	0.434	0.724	1.04

- 1.14 Only seismic site classes A, B, C and D, as defined in Part 4 of the NBCC, are permitted.
- 1.15 Wall and lintel deflections have been limited to L/360.

9

1.16 The maximum building aspect ratio is the longest plan dimension divided by the shortest plan dimension of the building. Attached garages can be excluded from the aspect ratio calculation provided they are separated from the main building by ICF walls meeting the requirements of this guide.

2. Construction

- 2.1 Except as noted otherwise for specific conditions, the design assumes that ALL walls are laterally supported by the building foundation, roof and floor systems, designed by others. Roof and floor systems can be designed in accordance with part 9 of NBCC or building system manufacturers.
- Foundation walls shall be laterally supported at the top and bottom prior to backfilling.
- 2.3 Provide lateral support at the bottom of the foundation wall in accordance with NBCC 2015 part 9.15.4.4. Alternatively, dowel the wall to the footing as per Table F. 1.
- 2.4 The contractor shall make adequate provision for construction loads and temporary bracing to keep the structure plumb and in true alignment at all phases of construction.
- 2.5 Hydrostatic pressure due to water build-up has not been included in the design and analysis. Backfill shall be drained in accordance with NBCC 2015 9.4.4.6.
- 2.6 Surface grading around the foundation is to slope away from building to allow surface water to drain away.
- 2.7 Provide adequate frost protection for all foundation walls and footings, both during construction and in the final installation.
- 2.8 Construction joints shall be made and located so as not to impair the strength of the structure. All specified reinforcing bars shall have minimum lap lengths across all construction joints.
- 2.9 Construction joints shall not be installed within 610 mm (2ft) of a wall opening.
- 2.10 All dimensions are in millimeters unless noted otherwise.
- 2.11 It is the responsibility of the roof and floor designer to ensure adequate bearing for all framing members is provided on the concrete walls.

3. Concrete

- Concrete work shall conform to the latest editions of CSA A23.1,2,3 for materials and workmanship.
- 3.2 The minimum 28-day compressive strength of concrete shall be 20 MPa.
- 3.3 Maximum size of aggregates in concrete walls with minimum concrete cover of 40mm, are to be 19mm (3/4") diameter. Maximum aggregate size shall be limited to 12.5mm (1/2") if the concrete cover is less than 40mm.
- 3.4 Concrete pours shall be terminated at locations of lateral support.
- 3.5 Use high frequency vibration to place all concrete. Extra care is needed when vibrating during concrete placement for the purpose of ensuring a homogeneous aggregate distribution, without segregation.
- 3.6 Take adequate measures to protect concrete from exposure to freezing temperatures and precipitation at least seven days after concrete placement.

4. Reinforcing Steel

- 4.1 Use Grade 400 deformed rebar placed in accordance with the manual of standard practice.
- 4.2 Reinforcement size, spacing and placement to be in accordance with notes and design tables for above grade walls, below grade walls and lintels.
- 4.3 10M bars may be installed as distributed steel where 15M bars are specified provided they are installed at half the spacing required for 15M bars. 15M bars may be installed as distributed steel where 10M bars are specified, but must be installed at the same spacing as specified for the 10M bars.

4.4 The required number of bars specified for concentrated reinforcing steel can be converted to 15M bars as per the following conversion table:

	rated Reinforcing Bars of Shear Walls
Specified 10M	Equivalent 15M
2	1
3 or 4	2
5 or 6	3

- 4.5 Maintain a minimum concrete clear cover and reinforcement spacing of 40mm (1 ½") for all reinforcing steel, except 20mm (3/4") cover is permitted for below grade walls of heated buildings. The minimum concrete covers must be maintained for vertical bars in below grade walls.
- 4.6 Where bars within a lintel cannot achieve a minimum concrete side cover and spacing of 40mm (1½"), the bars are required to be bundled. The following notes apply to all bundled bars:
 - a) Groups of parallel reinforcing bars bundled in contact, assumed to act as a unit, with not more than four in any one bundle, may be used. Bundled bars shall be tied, wired, or otherwise fastened together to ensure that they remain in position.
 - Bundled bars shall not be spliced over the span of any lintel.
- 4.7 Minimum bar lap length shall be:
 - a) 450 mm (18") for 10M bars
 - b) 650 mm (26") for 15M bars
 - c) 750 mm (30") for 20M bars
- 4.8 Standard hook lengths shall be:

4.9

- Startuaru Hook lerigiris silali be
 - a) 200 mm (8") for 10M barsb) 250 mm (10") for 15M bars
 - c) 300 mm (12") for 20M bars

Maximum transverse spacing (gap) between non-contact parallel bars spliced by lap splices, shall not exceed the lesser of one-fifth of the required lap splices length or 150mm.

- 4.10 Guidance was taken from PCA 100-2017 Prescriptive Design of Exterior Walls for One- and Two-Family Dwellings where steel reinforcement does not meet the minimum requirements of CSA A23.3 Clause 14.1. References to research conducted by PCA for these conditions are included in PCA 100-2017
- 4.11 Where the vertical wall reinforcement spacing exceeds maximum spacing requirements according to CSA A23.3 Clause 14.1 the design capacity is at least one third more than required.
- 4.12 Horizontal temperature and shrinkage reinforcing steel may be less than specified in CSA A23.3. This is due to ideal curing conditions within the ICF system, which reduce the risk of cracking. In addition, finishes are not applied directly to the concrete wall; therefore, the risk of potential cracks propagating to the surface of the finishes is minimized.

5. Above Grade and Below Grade Walls

- 5.1 Wall thicknesses given in above and below grade wall tables are the nominal thicknesses. The actual thickness of the wall may vary by ± ¼".
- 5.2 Above grade and below grade walls are designed to resist out-of-plane and in-plane loads by providing the specified reinforcing steel.

- 5.3 Provide horizontal and vertical distributed steel throughout all walls as described in the Distributed Reinforcing Steel section
- 5.4 Provide additional concentrated horizontal and vertical steel around door and window openings, beside stair openings, under point loads, and at the ends of all walls and at all corners as described in the Window and Door Openings, Stair Openings, Concentrated Point Loads and Shear Walls sections.
- 5.5 The specified reinforcing is applicable to building with walkout basements. However, the global slope stability and building stability for unbalance soil pressures created by the walkout condition is by others.
- 5.6 Provide 600 mm (24") × 600 mm (24") horizontal bent dowel at each corner of the walls. Size and spacing of the dowel should match the horizontal reinforcement as per above and below grade tables.

5.1 Distributed Reinforcing Steel

- 5.1.1 Horizontal reinforcing is to consist of 10M or 15M continuous bars at 300 mm (12") o.c. to 900mm (36") o.c., in accordance with the tables.
- 5.1.2 Provide one continuous horizontal bar at maximum 150mm (6") from the top of the wall and at all floor levels.
- 5.1.3 Tables B. 1.1, B. 2.1, B. 3.1 and B. 4.1 provide the necessary distributed vertical steel to resist the out-of-plane loads for below grade ICF walls with 6" tie spacing.
- 5.1.4 Tables B. 1. 2, B. 2. 2, B. 3. 2 and B. 4. 2 provide the necessary distributed vertical steel to resist the out-of-plane loads for below grade ICF walls with 8" tie spacing.
- 5.1.5 Tables A. 1. 1 and A. 2. 1 provide the necessary distributed vertical steel to resist the out-of-plane loads for above grade ICF walls with 6" tie spacing.
- 5.1.6 Tables A. 2. 1 and A. 2. 2 provide the necessary distributed vertical steel to resist the out-of-plane loads for above grade ICF walls with 8" tie spacing.
- 5.1.7 Interpolation within the tables is not permitted.
- 5.1.8 Any table may be used where the local wind and seismic design values do not exceed the maximum values given in the table.
- 5.1.9 All basement walls in a building with a walkout condition shall be reinforced as a below grade wall for the maximum backfill height. Place the reinforcing in the center of the wall where the basement wall does not support any backfill.
- 5.1.10 The vertical distributed reinforcing bar spacing given in millimeters in the tables is the nominal dimension, the bar spacing in inches is the exact dimension. The vertical bar spacing is given as multiples of the form web spacing.
- 5.1.11 For walls below grade, the vertical reinforcing is to be placed on the inside face of the wall as shown in Detail B. 1.
- 5.1.12 For walls above grade, the vertical reinforcing is to be placed in the middle of the wall as shown in Detail A. 1.
- 5.1.13 Walls above grade formed using 300mm (12") forms shall have all distributed steel placed in two equal layers. One layer is to be placed in the exterior third of the wall and the other layer in the interior third of the wall as shown in Detail A. 2.
- 5.1.14 The height of an above grade wall is the distance from the top of the floor connection at its base to the bottom of the floor or roof connection at its top, as shown in Detail A. 12.
- 5.1.15 The height of a below grade wall is the distance from the top of the basement floor slab to the point of bearing for the floor system, as shown in Detail A. 12.
- 5.1.16 Backfill height against a below grade wall is the distance from the top of the basement floor slab to the finished exterior grade level.
- 5.1.17 Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where

- 18" o.c. spacing is specified for horizontal bars as shown in Detail A. 3.
- 5.1.18 Provide three horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars as shown in Detail A. 4.
- 5.1.19 Provide four horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars as shown in Detail A. 5.
- 5.1.20 Alternating vertical bar spacing of 8" o.c. and 16" o.c. may be used to achieve an average spacing of 12" o.c. where 12" o.c. spacing is specified for vertical bars as shown in Detail A. 6.
- 5.1.21 Distributed reinforcing in a wall shall not be less than that required for the wall above.

5.2 Shear Walls

- 5.2.1 Shear walls are solid ICF wall segments between openings and corners.
- 5.2.2 Openings 150mm (6") in diameter and less are permitted within a shear wall, provided they do not occur within 300mm (12") of the ends of the shear wall.
- 5.2.3 Shear walls are designed for building with or without walkout basement. Wall configurations for building without and with walkout basement are shown in Detail A. 7 and Detail A. 8, respectively. Wall configurations for walkout basement walls is shown in Detail A. 9.
- 5.2.4 A minimum number and length of shear walls is required in all four sides of the building on all levels in the building as specified in shear wall tables (A.3. to A.11.) for above grade walls. This is to replace the requirements for 1200mm long wall segments at each corner in exterior walls specified in NBCC 9.20.17.3.(1) and 9.20.17.4.(1).
- 5.2.5 Below grade walls shall have the same number and length of shear walls as required for the walls immediately above.
- 5.2.6 All walls shall be proportionally and evenly distributed in both the transverse and longitudinal direction of the building.
- 5.2.7 A minimum number of full height vertical reinforcing bars are to be installed at the ends of all required shear walls in accordance with shear wall tables (A.3. to A.11.) for the number and length of shear walls provided. These bars are referred to as concentrated reinforcement and are in addition to the distributed reinforcement specified elsewhere.
- 5.2.8 The concentrated vertical reinforcement at the ends of each required shear wall is to be placed in accordance with Detail A. 10.
- 5.2.9 Matching dowels are to be provided for the concentrated and distributed vertical reinforcement at the base of all required shear walls into floor below as shown in Detail A. 11.
- 5.2.10 Horizontal reinforcement in shear walls where $S_{a,ICF} > 0.2$ shall be terminated at the ends of the wall with a standard hook.
- 5.2.11 Choose the first column in shear wall tables (A.3. to A.11.) that meets the minimum required number and lengths of shear wall to determine the minimum number of bars to install at the ends of all shear walls (sides of all openings and at each corner). Therefore, first check if there is at least one shear wall that meets the minimum length requirement given in the table for one shear wall. If not, then check if there are at least two shear walls that meet the minimum length requirement given in the table for two shear walls, and so on. When a number of shear walls is found that meets the minimum length requirements, use that column to determine the required concentrated reinforcement at the ends of those shear walls.

5.3 Concentrated Point Loads on Walls

5.3.1 All point loads, such as concentrated loads created by girder trusses, columns and beams, shall bear directly on top of the concrete wall, and shall not be hung or in any other manner

- create an eccentric loading on the concrete wall. Provide beam pockets, as necessary.
- 5.3.2 The minimum length of solid wall without openings directly below point loads, such as concentrated loads created by girder trusses, columns and beams, shall be 6'-0". In addition to the wall reinforcing required in the following tables, two additional 15M vertical bars shall be installed directly below the point load. This length of solid wall may contain a corner.
- 5.3.3 Use Table C. 1 for the maximum unfactored point load that can be applied on a solid wall without opening if length of the wall is less than 6'-0".
- 5.3.4 Maximum unfactored point loads given in Table C. 1 are only the wall capacity. It is the responsibility of the roof and floor designer to ensure adequate bearing for all framing members is provided on the concrete walls.

5.4 Window and Door Openings

- 5.4.1 The cumulative width of openings in above grade walls shall not be more than 70% of the total wall length.
- 5.4.2 The cumulative width of openings in below grade walls shall not be more than 25% of the total wall length.
- 5.4.3 Openings in below grade walls shall not exceed a maximum width of 1.83m (6'-0") and a maximum height of 0.914m (3'-0").
- 5.4.4 The length of solid wall between two openings in below grade walls shall be equal to the average width of the openings and at least 1.22m (4'-0").
- 5.4.5 A minimum of 2-10M bars is to be installed completely around all sides of openings.
- 5.4.6 Provide additional horizontal reinforcing steel directly above the opening as required for lintels.
- 5.4.7 Horizontal bars above and below the opening shall extend a minimum of 610mm (24") past opening.
- 5.4.8 Vertical bars on each side of the opening shall extend the full height of the wall.
- 5.4.9 Distributed vertical reinforcing steel that is interrupted by an opening shall be replaced by an equal amount of concentrated vertical reinforcing steel with half placed on each side of the opening. The additional steel is to be evenly distributed within a distance equal to half the opening width, up to a maximum of 1.22m (4'-0"), from each side of the opening.
- 5.4.10 If the spacing of the additional concentrated vertical reinforcing required on each side of openings, described in the previous note, is less than 150mm (6"), a local design professional shall be retained to prepare the design in accordance with applicable standards.
- 5.4.11 Provide additional vertical reinforcing at the sides of openings as required at the ends of shear walls.

5.4.1 Lintels

- 5.4.1.1 All concrete wall segments above openings are to be considered lintels.
- 5.4.1.2 The top of all lintels is to be laterally supported by the roof and floor systems, designed by others.
- 5.4.1.3 Lintels shall be a minimum of 200mm (8") deep.
- 5.4.1.4 Lintel bottom reinforcing is to be installed a maximum of 89mm (3½") from the bottom of the lintel and is to extend a minimum of 610mm (24") past the wall opening.
- 5.4.1.5 A minimum of 2-10M bars is to be installed completely around all sides of openings, as shown in Detail L. 1.
- 5.4.1.6 Where stirrups are required for lintels with uniformly distributed load, they shall be single 10M hook stirrups installed around bottom and top bars over the given end distance at each side of the beam as shown in Detail L. 2.
- 5.4.1.7 Where stirrups are required for lintels with concentrated load, they shall be single 10M hook stirrups installed around

- bottom and top bars over the whole length of the beam. 5.4.1.4.
- 5.4.1.8 Minimum lintel reinforcing is to consist of bottom bars indicated in the design tables, along with horizontal 10M continuous wall reinforcing at 406mm (16") on center, and a minimum of 1-10M top bar located 50mm (2") from the top of the lintel, as shown in Detail L. 3.
- 5.4.1.9 Provide a minimum of three stirrups in all lintels at the spacing indicated in the tables when S_a (0.2) > 0.4.
- 5.4.1.10 The lintel design tables are only applicable for uniformly distributed gravity line loads and point loads, such as concentrated loads created by girder trusses, columns and beams.
- 5.4.1.11 Concentrated load lintel tables consider only a single concentrated load acting on anywhere along the lintel span.
- 5.4.1.12 The lintel tables do not consider uniform and concentrated load to act simultaneously on the lintel.
- 5.4.1.13 The uniformly distributed load (UDL) is calculated by multiplying the roof and/or floor loads, including snow load (SL), live load (LL) and dead load (DL), by the tributary width (TW) of the roof and/or floor. The tributary width is determined by adding half the span of each rafter/joist bearing on the concrete lintel. For example, the UDL for a lintel supporting floor joists spanning 10'-0" and roof trusses spanning 30'-0" on one side only is calculated as follows:

$$\begin{aligned} \mathsf{UDL} &= \mathsf{TW}_{\mathsf{FLOOR}} \ ^* \ (\mathsf{LL}_{\mathsf{FLOOR}} + \mathsf{DL}_{\mathsf{FLOOR}}) + \mathsf{TW}_{\mathsf{ROOF}} \ ^* \ (\mathsf{SL}_{\mathsf{ROOF}} \\ &+ \mathsf{DL}_{\mathsf{IROOF}}) \end{aligned}$$

- 5.4.1.14 The weight of walls above the lintel has been included in the design of the lintel tables and does not need to be added to the UDL calculated as described above.
- 5.4.1.15 Where there is less than 305mm (12") of wall between openings, the lintel shall be reinforced to span over both openings, as shown in Detail L. 4.
- 5.4.1.16 Where there is less than 610mm (24") of wall between openings, and openings are greater than 1.53m (5'-0") in length, the lintel shall be reinforced to span over both openings, as shown in Detail L. 5.

5.5 Stair Openings

- 5.5.1 Additional reinforcement is to be provided in exterior walls where a stair opening interrupts the required lateral support provided by the floor framing.
- 5.5.2 Table A. 12. provides the maximum dimension of stair opening parallel to the wall and the required horizontal reinforcement of above grade walls at stair opening.
- 5.5.3 Table B. 5. provides the maximum dimension of stair opening parallel to the wall and the required horizontal reinforcement of below grade walls at stair opening. Below grade walls at stair openings are designed for a backfill equivalent fluid density of 480 kg/m3 and a maximum Sa(0.2) of 0.7. Reinforcement design of below grade walls at stair openings shall be reviewed by a professional engineer if the wall does not meet the requirement of this table.
- 5.5.4 Lateral restraint of the wall is to be provided by the floor framing on each side of the stair opening, by others.

5.5.5 The spacing of distributed vertical reinforcement is to be reduced for a distance of 1.22m (4'-0") on each side of the stair opening for above grade and below grade walls. The required spacing is calculated by the following equation and listed in Table A. 13.

(METRIC)
$$S_{REDUCED} = 2.44/(L_{UNSUPPORTED} + 2.44) * S_{TABLES}$$

(IMPERIAL) $S_{REDUCED} = 8/(L_{UNSUPPORTED} + 8) * S_{TABLES}$

where

 $S_{REDUCED}$ = the bar spacing (mm/in) required at the sides of the stair opening.

S_{TABLES} = the required bar spacing (mm/in) for a laterally supported wall as determined from above grade and below grade walls tables.

L_{unsupported} = the length of wall (m/ft) that is laterally unsupported as a result of a stair opening in the floor framing.

5.5.6 If the stair opening is out of the scope of design limitations for stair opening table, additional distributed horizontal reinforcing bars are to be added at the stair opening as specified by a professional engineer.

5.6 Laterally Supported Unreinforced Foundation Wall

- 5.6.1 Foundation walls in this section are designed for backfill equivalent fluid density of 480 kg/m³ in accordance with section 9.4.4.6 of NBC 2015 & OBC 2012r2020.
- 5.6.2 If the foundation wall is laterally supported at the top (e.g. by floor joists) and meets all the requirements of NBC 2015 section 9.15.4, and supports only wood frame construction above, a 20 MPa unreinforced concrete wall is adequate for the specific wall and backfill height, as per NBC 2015 table 9.15.4.2.A, shown in Detail B. 2.
- 5.6.3 Use below grade wall tables if the height of the wall and / or backfilled soil is greater than the maximum values of Table B.6.
- 5.6.4 Use below grade wall tables for walls supporting ICF wall above.

5.7 Laterally Unsupported Foundation Walls (Knee Wall) with Wood Framing Above

- 5.7.1 If the foundation wall is not supported at the top (e.g. by floor joists) and supports only wood frame construction above, the design can follow the knee wall design as shown in Details B.3 and B.4. The design includes both the footing sizing and reinforcing of the footing and wall.
- 5.72 If heights of backfilled soil and / or foundation wall are greater than what shown in these details, reinforcement design of the wall must be reviewed by a professional engineer.
- 5.7.3 Foundations are to bear directly on material suitable for 75 kPa (1566 psf) bearing pressure.

6. Wood Ledger Connection

- 6.1 Anchor bolts are designed to transfer vertical load of floor to the ICF wall. Design of floor diaphragm by others.
- 6.2 Design loads are 40psf (1.9 kPa) floor live load, 15psf (0.7 kPa) floor dead load.
- Anchor bolts are to be staggered as shown in Detail C. 1. Use Table C. 2. for size and spacing of the anchors.

7. Brick Ledge

- 7.1 The concrete ledge is to support uniformly distributed loads only. It is not to support concentrated load. A brick ledge section is shown in Detail C. 2.
- 7.2 Table C. 3. provides the brick ledge capacity as the total height of brick veneer or tributary width of a floor that can be supported per unit length of the brick ledge.
- 7.3 The capacity given in Table C. 3. is only for the capacity of the brick ledge. The veneer height may be limited by other

- building code requirement or manufacturer's installation requirements.
- 7.4 The above grade and below grade wall reinforcing tables include the effects of using the ledge to support floor framing.
- 7.5 The below grade wall reinforcing tables include the effects of using the ledge to support masonry veneer.
- 7.6 The maximum brick height given does not account for windows. To include the effect of windows, it is necessary to calculate an effective brick height.
- 7.7 The ledge reinforcement is 10M hooked rebar, as shown in Detail C. 2 or xLerator as shown in Detail C. 3. It is to be placed 6" or 8" on center matching the tie spacing of ICF blocks.

8. Strip Footing

- 8.1 Tables F. 2. to F. 4. provides minimum width and thickness of footing for different loadings and soil bearing pressures.
- 8.2 Soft areas uncovered during excavation shall be subexcavated to sound material and filled with clean and free drained granular soil.
- 8.3 Protect soil from freezing adjacent to and below all footings.
- 8.4 All footings are to be reinforced with 2-15M continuous bars, as per Detail F. 1.
- 8.5 Tables F. 2. to F. 4. do not include masonry veneer. Increase the footing width by 2" and the thickness by 1" for:
 - a) Every 12'-0" of masonry veneer for 3000psf soil bearing capacity.
 - b) Every 10'-0" of masonry veneer for 2500psf soil bearing capacity.
 - c) Every 8'-0" of masonry veneer for 2000psf soil bearing capacity.
 - d) Every 6'-0" of masonry veneer for 1500psf soil bearing capacity.
- 8.6 The footing size for locations with Sa (0.2) > 0.4 to be the larger of 30" wide by 12" deep or the size shown in the table.
- 8.7 Provide footing dowels as shown in Detail F. 1.
- 8.8 Footing dowels are 10M or 15M bars embedded 6" or 8" into the footing. Dowels size and spacing is given in Table F. 1.
- 8.9 Provide bent dowels as per Note. 4 of Table F. 1, at shear walls locations matching the size and spacing of vertical bars of the shear walls.

Details & Tables Index

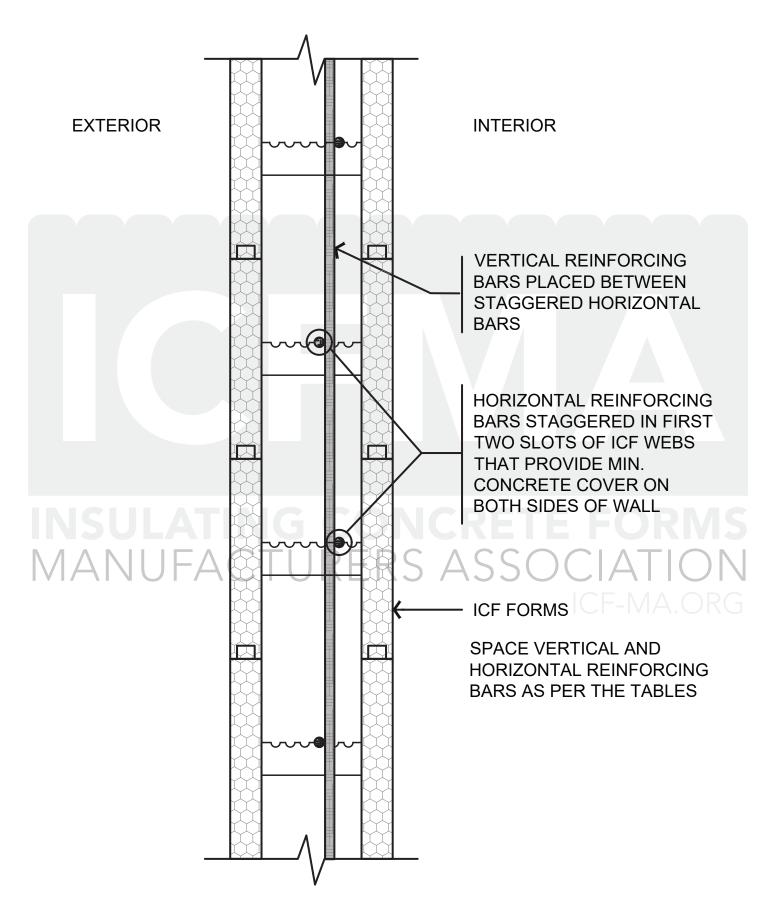
- 18 Detail A.1. Above Grade Wall Reinforcing Placement for 6, 8 and 10 Thick Walls.
- 19 Detail A.2. Above Grade Wall Reinforcing Placement for 12" Thick Walls.
- 20 Detail A.3. Alternating Horizontal Bar Spacing of 12" O.C. and 24" O.C. to Achieve an Average Spacing of 18" O.C. (Two Horizontal Bars in Every Three Rows of ICF Blocks)
- 20 Detail A.4. Three Horizontal Bars in Every Two Rows of 18" High Block to Achieve an Average Spacing of 12" O.C.
- 21 Detail A.5. Four Horizontal Bars in Every Three Rows of 16" High Block to Achieve an Average Spacing of 12" O.C.
- 21 Detail A.6. Alternating Vertical Bar Spacing of 8" O.C. and 16" O.C. to Achieve an Average Spacing of 12" O.C. (Two Vertical Bars in Every Three Cells)
- 22 Detail A.7.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof.
- 22 Detail A.7.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof & Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.
- 23 Detail A.7.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof.
- 24 Detail A.8.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof.
- 25 Detail A.8.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof & Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.
- 26 Detail A.8.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof.
- 27 Detail A.9.1. Walkout Basement Wall of a Single Story ICF Structure Supporting Wood Frame Roof.
- 28 Detail A.9.2. Walkout Basement Wall of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.
- 29 Detail A.9.3. Walkout Basement Wall of a Two-Story Building with Main Floor ICF Walls Supporting Second Story Wood Framed Walls, Floor, and Roof.
- 30 Detail A.9.4. Walkout Basement Wall of a Two-Story Wood Framed Structure Supporting Wood Frame Floors, and Roof, Walls, Floor, and Roof.
- 31 Detail A.10. Shear Wall Concentrated Reinforcing Placement.
- 32 Detail A.11. Shear Wall Dowels.
- 33 Detail A.12. Above and Below Grade Wall Height
- 17 Detail B. 1. Below Grade Wall Reinforcing Placement for All Wall Thicknesses.
- 94 Detail B.2. Laterally Supported Foundation Wall
- 95 Detail B.3. Laterally Unsupported Foundation Wall (Knee Wall)
- 96 Detail B.4. Laterally Unsupported Foundation Wall (Knee Wall) with Brick Veneer
- 97 Detail C.1. Wood Ledger Connection
- 98 Detail C. 2. Brick Ledge Connection
- 98 Detail C.3. xLerator Ledge Reinforcement
- 100 Detail F.1. Footing Dowel
- 63 Detail L. 1. Reinforcing Around Openings.
- 64 Detail L. 2. Lintel Stirrup Detail.
- 64 Detail L. 3. Lintel Section
- 65 Detail L. 4. Lintel Span with Less Than 305mm (12") of Wall Between Openings.
- Detail L. 5. Lintel Span with Less Than 610mm (24") of Wall Between Openings, and Openings Are Greater Than 1.53m (5'-0") in Length.

- Table A.1.1. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa,ICF \leq 0.2 and Hourly Wind Pressure, $q_{_{1/50}} \leq$ 1.05 for ICF Walls with 6" Tie Spacing
- Table A.1.2. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ for Walls with 8" Tie Spacing
- Table A.2.1. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, S $_{a,ICF} \ge 0.2$ and Hourly Wind Pressure, q $_{1/50} \le 1.05$ for ICF Walls with 6" Tie Spacing
- Table A.2.2. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a,ICF} \ge 0.2$ and Hourly Wind Pressure, q $_{1/50} \le 1.05$ for ICF Walls with 8" Tie Spacing
- Table A.3. Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \leq 0.2$ and Hourly Wind Pressure, $q_{1/50} \leq 0.5$ kPa (in a Building Without Walkout Basement)
- Table A.4 Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \leq 0.2$ and Hourly Wind Pressure, $0.5 kPa < q_{1/50} \leq 0.75 kPa$ (in a Building Without Walkout Basement)
- Table A.5 Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \leq 0.2$ and Hourly Wind Pressure, $0.75 kPa < q_{1/50} \leq 1.05 kPa$ (in a Building Without Walkout Basement)
- Table A.6 Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} > 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa (in a Building Without Walkout Basement)
- Table A.7. Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \leq 0.2$ and Hourly Wind Pressure, $q_{1/50} \leq 0.5$ kPa (in a Building With Walkout Basement)
- Table A.8 Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \leq 0.2$ and Hourly Wind Pressure, $0.5 \text{kPa} < q_{_{1/50}} \leq 0.75 \text{kPa}$ (in a Building With Walkout Basement)
 - Table A.9 Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, S_{a,ICF} \leq 0.2 and Hourly Wind Pressure, 0.75kPa < q_{1/50} \leq 1.05kPa (in a Building With Walkout Basement)
 - Table A.10 Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} > 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05 kPa$ (in a Building With Walkout Basement)
- Table A.11 Above Grade Walkout Basement Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \leq 0.4$ and Hourly Wind Pressure, $q_{1/50} \leq 1.05 kPa$
- 91 Table A.12. Above Grade Wall Distributed Horizontal Reinforcement at Stair Openings
- 93 Table A.13. Bar Spacing Required at Each Side of the Stair Opening
- Table B.1.1.— Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) \leq 0.25 and Hourly Wind Pressure, $q_{_{1/50}} \leq$ 1.05kPa, for ICF Walls with 6" Tie Spacing
- Table B.1.1. Continued Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) ≤ 0.25 and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, for ICF Walls with 6" Tie Spacing
- Table B.1.2.– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) ≤ 0.25 and Hourly Wind Pressure, $q_{_{1/50}}$ ≤ 1.05kPa, for ICF Walls with 8" Tie Spacing
- 37 Table B.1.2. Continued Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) \leq 0.25 and Hourly Wind Pressure, $q_{1/50} \leq$ 1.05kPa, for ICF Walls with 8" Tie Spacing

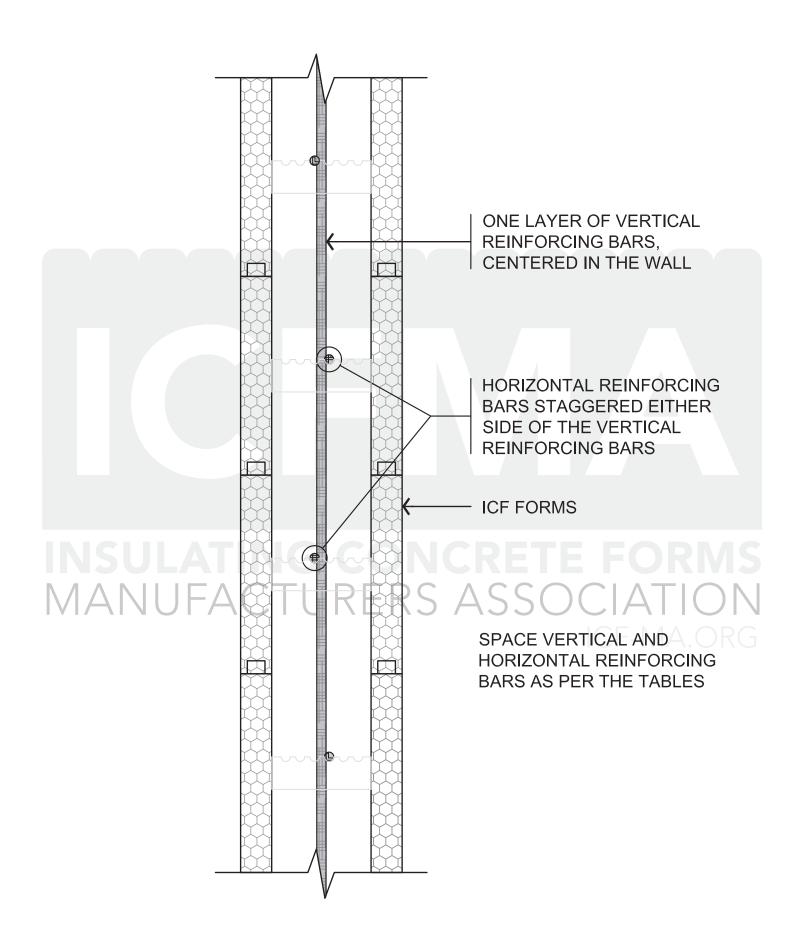
60

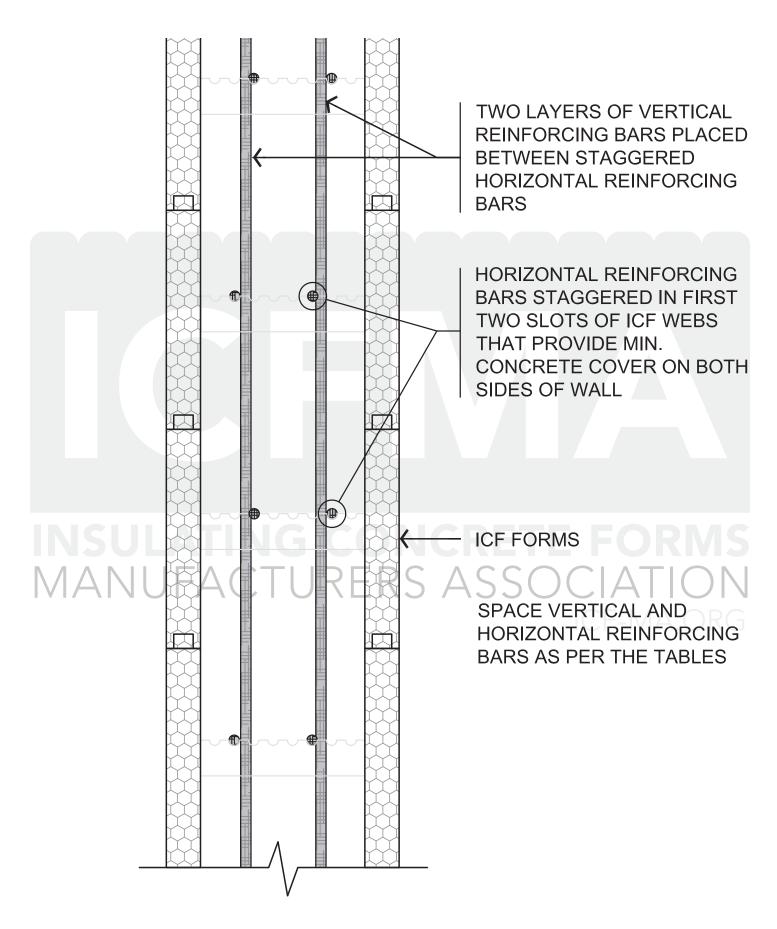
- Table B.2.1. Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 0.25 < Sa(0.2) ≤ 0.70 and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 6"Tie Spacing
- 39 Table B.2.1. Continued − Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25 < Sa(0.2) \le 0.70$ and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, for ICF Walls with 6" Tie Spacing
- 40 Table B.2.2. Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 0.25 < Sa(0.2) ≤ 0.70 and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 8" Tie Spacing
- 41 Table B.2.2. Continued Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25 < Sa(0.2) \le 0.70$ and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, for ICF Walls with 8" Tie Spacing
- 42 Table B.3.1. Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 0.70 < Sa(0.2) ≤ 1.2 and Hourly Wind Pressure, $q_{1/50}$ ≤ 1.05kPa, for ICF Walls with 6" Tie Spacing
- 43 Table B.3.1. Continued Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70 < Sa(0.2) \le 1.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 6" Tie Spacing
- Table B.3.2. Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 0.70 < Sa(0.2) ≤ 1.2 and Hourly Wind Pressure, q_{1/50} ≤ 1.05kPa, for ICF Walls with 8" Tie Spacing
- Table B.3.2. Continued— Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70 < Sa(0.2) \le 1.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 8" Tie Spacing
- 46 Table B.4.1. Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 1.2 < Sa(0.2) ≤ 1.75 and Hourly Wind Pressure, q_{1/50} ≤ 1.05kPa, for ICF Walls with 6" Tie Spacing
- 47 Table B.4.1. Continued— Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 1.2 < Sa(0.2) \leq 1.75 and Hourly Wind Pressure, $q_{_{1/50}} \leq$ 1.05kPa, for ICF Walls with 6" Tie Spacing
- Table B.4.2. Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 1.2 < Sa(0.2) ≤ 1.75 and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 8" Tie Spacing
- 49 Table B.4.2. Continued— Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 1.2 < Sa(0.2) ≤ 1.75 and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, for ICF Walls with 8" Tie Spacing
- Table B. 5. Below Grade Wall Distributed Horizontal Reinforcement at Stair Opening for Seismic Zone Classification Sa(0.2) \leq 0.7, Hourly Wind Pressure , $q_{1/50} \leq$ 1.05 kPa, and Backfill
- 94 Table B.6. Maximum Height of Finish Ground Above Basement Floor
- 90 Table C.1. Maximum Unfactored Point Load on a Solid Wall Without Opening
- 97 Table C.2. Floor Ledger Anchor Bolts Size and Spacing
- 99 Table C.3 Brick Ledge Load Capacity
- 130 Table C-3 (Continued)
- 131 Table C-3 (Continued)
- 132 Table C-3 (Continued)
- 133 Table C-3 (Continued)
- 134 Table C-3 (Continued)
- 135 Table C-3 (Continued)
- Table C-3 (Continued)Table C-3 (Continued)
- 138 Table C-3 (Continued)
- 139 Table C-3 (Continued)
- 140 Table C-3 (Continued)
- 141 Table C-3 (Continued)
- 142 Table C-3 (Continued)

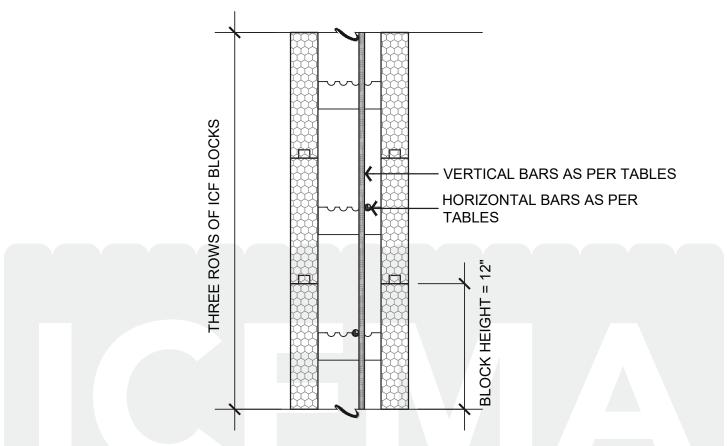
- 143 Table C-3 (Continued)
- 144 Table C-3 (Continued)
- 145 Table C-3 (Continued)
- 146 Table C-3 (Continued)
- 100 Table F.1- Footing Dowels Size and Spacing
- 101 Table F.2- Minimum Exterior Strip Footing Sizes Not Supporting Roof Loads
- 102 Table F.3- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads ≤ 2kPa
- 103 Table F.4- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads ≤4kPa
- 66 Table L1 6" Lintel Reinforcement with Uniformly Distributed Load
- 67 Table L1 Continued
- 68 Table L1 Continued
- 69 Table L2 8" Lintel Reinforcement with Uniformly Distributed Load
- 70 Table L2 Continued
- 71 Table L2 Continued
- 72 Table L3 10" Lintel Reinforcement with Uniformly Distributed Load
- 73 Table L3 Continued
- 74 Table L3 Continued
- 75 Table L4 12" Lintel Reinforcement with Uniformly Distributed Load
- 76 Table L4 Continued
- 77 Table L4 Continued
- 78 Table L5 6" Lintel Reinforcement Concentrated Load
- 79 Table L5 Continued
- 80 Table L5 Continued
- 81 Table L6 8" Lintel Reinforcement Concentrated Load
- 82 Table L6 Continued
- 83 Table L6 Continued
- 84 Table L7 10" Lintel Reinforcement Concentrated Load
- 85 Table L7 Continued

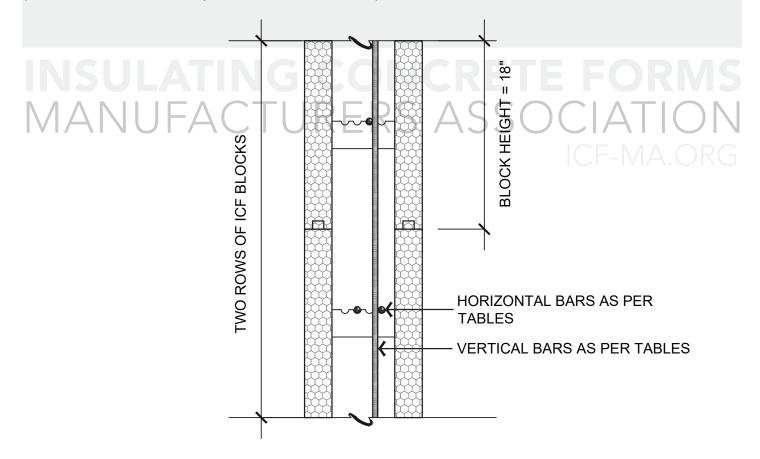

86

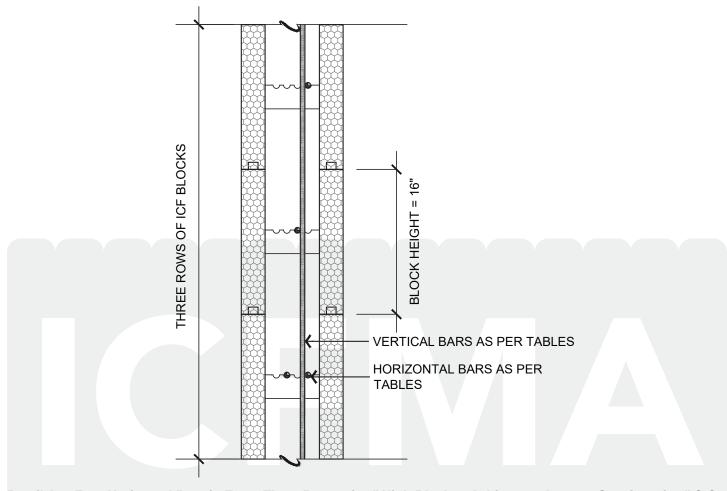
89


- Table L7 Continued
- 87 Table L8 12" Lintel Reinforcement Concentrated Load
- 88 Table L8 Continued
 - Table L8 Continued

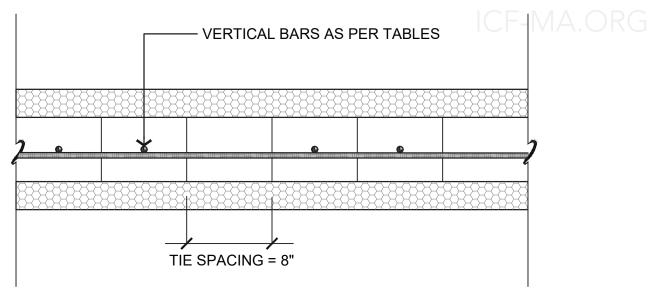

Below & Above Grade Walls Details and Tables


Detail B. 1. Below Grade Wall Reinforcing Placement for All Wall Thicknesses.

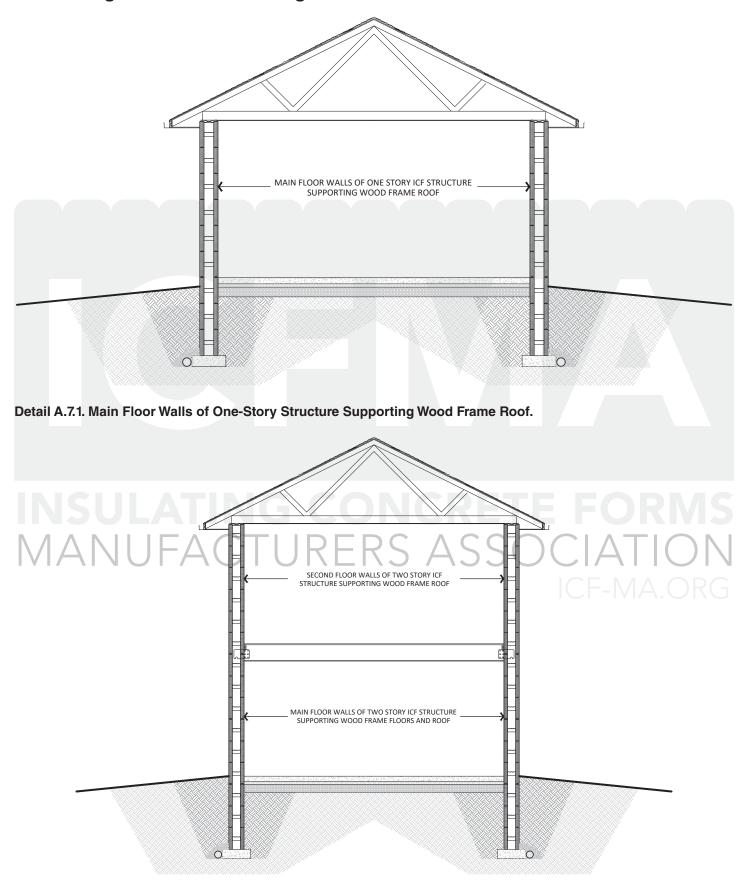

Detail A.1. Above Grade Wall Reinforcing Placement for 6", 8" and 10" Thick Walls.


Detail A.2. Above Grade Wall Reinforcing Placement for 12" Thick Walls.

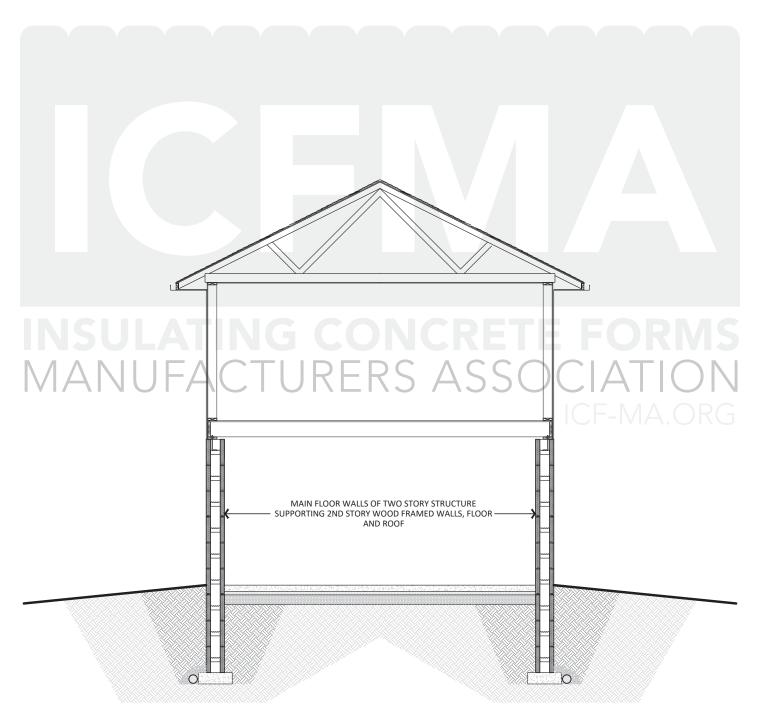
Detail A.3. Alternating Horizontal Bar Spacing of 12" O.C. and 24" O.C. to Achieve an Average Spacing of 18" O.C. (Two Horizontal Bars in Every Three Rows of ICF Blocks)



Detail A.4. Three Horizontal Bars in Every Two Rows of 18" High Block to Achieve an Average Spacing of 12" O.C.

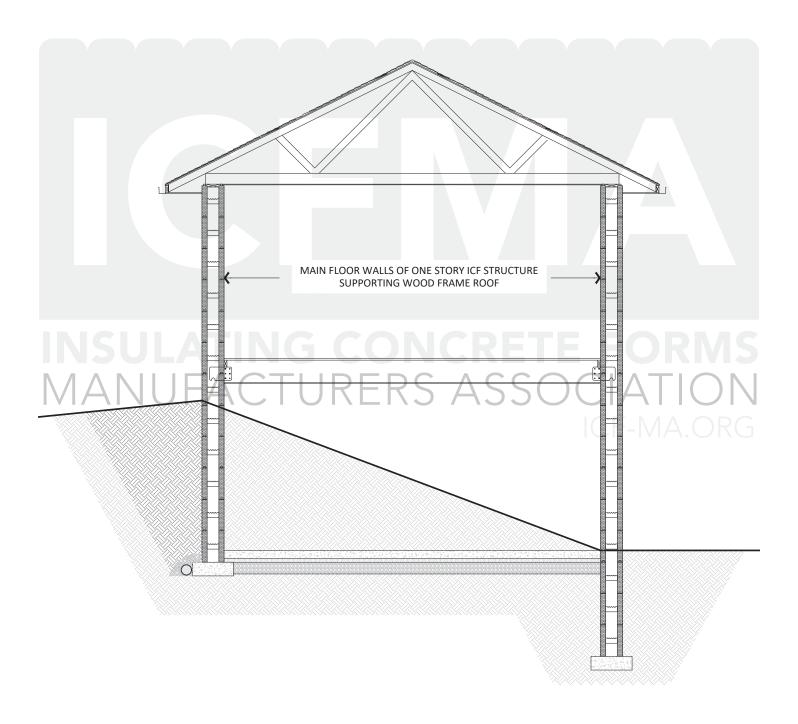

Detail A.5. Four Horizontal Bars in Every Three Rows of 16" High Block to Achieve an Average Spacing of 12" O.C.

INSULATING CONCRETE FORMS MANUFACTURERS ASSOCIATION

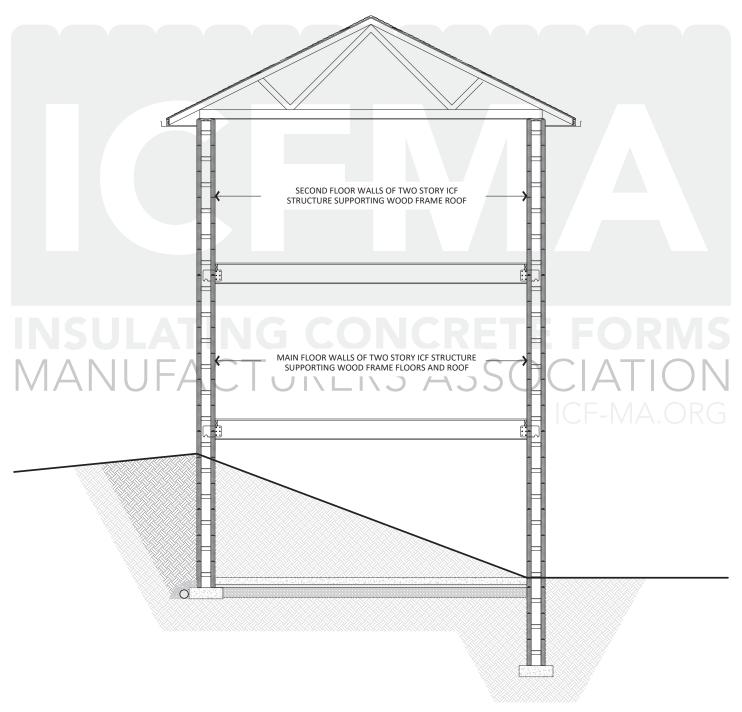


Detail A.6. Alternating Vertical Bar Spacing of 8" O.C. and 16" O.C. to Achieve an Average Spacing of 12" O.C. (Two Vertical Bars in Every Three Cells)

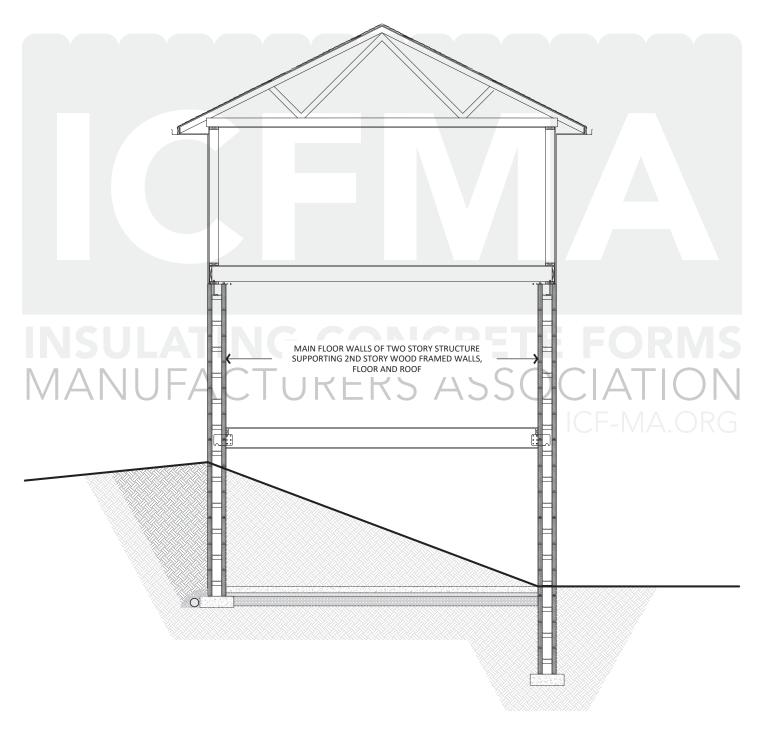
Wall Configurations in a Building Without Walkout Basement



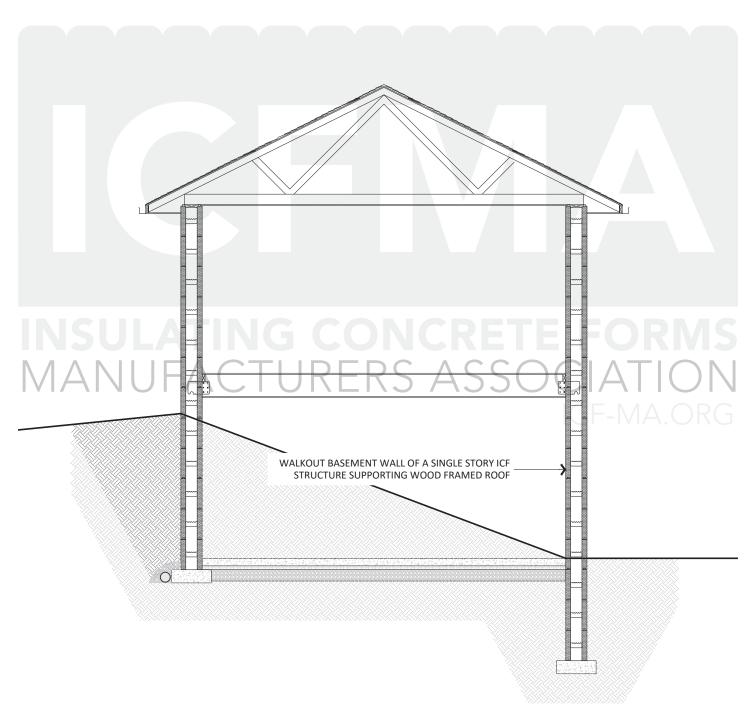
Detail A.7.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof & Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.



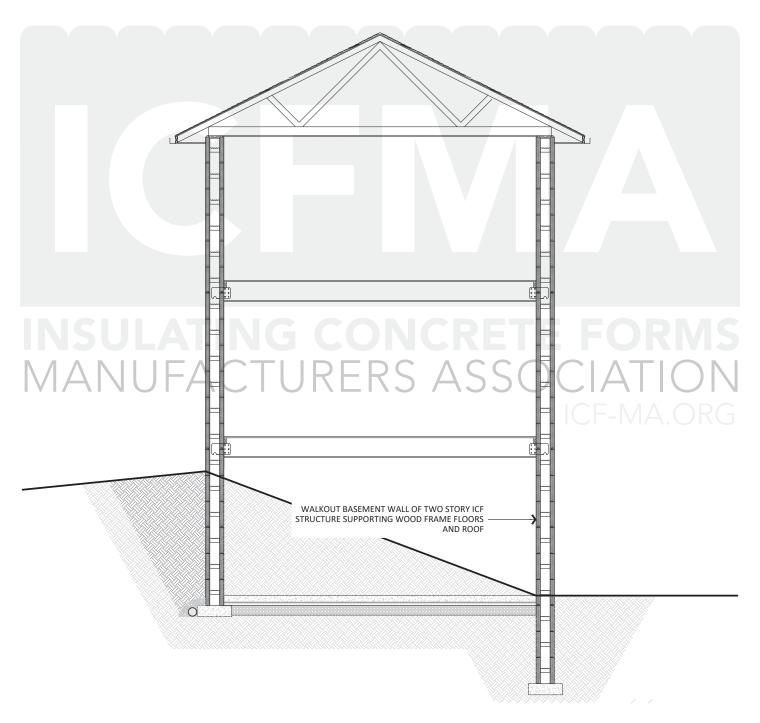
Detail A.7.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof.


Wall Configurations in a Building with Walkout Basement

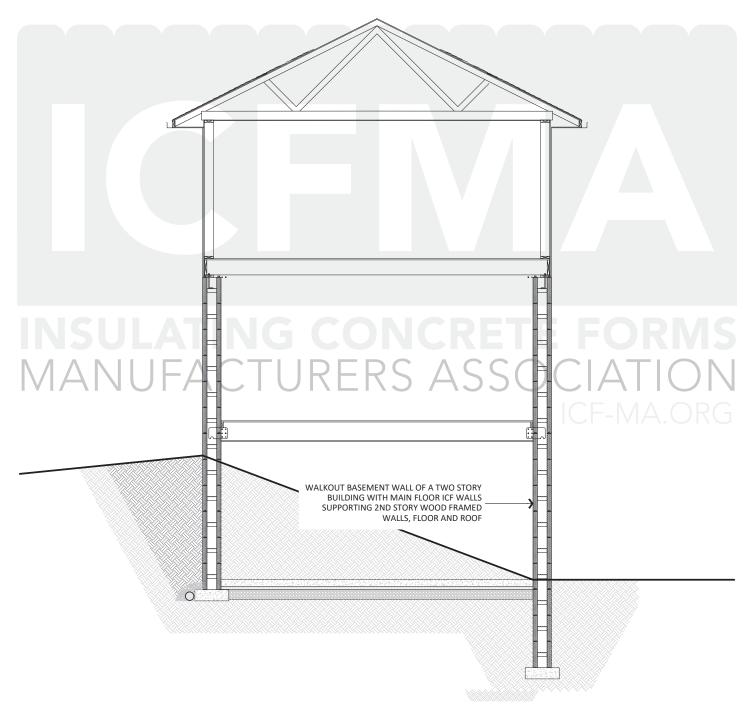
Detail A.8.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof.

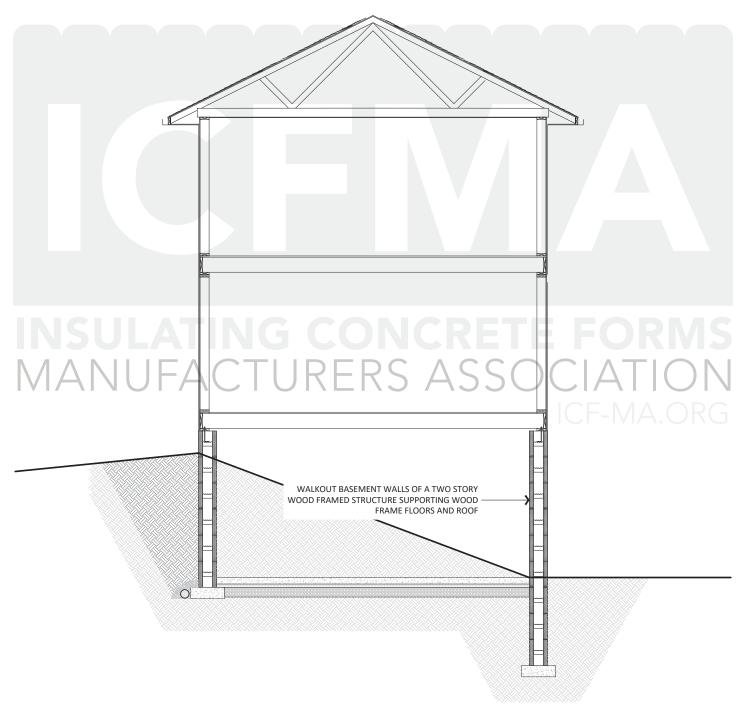


Detail A.8.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof & Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.

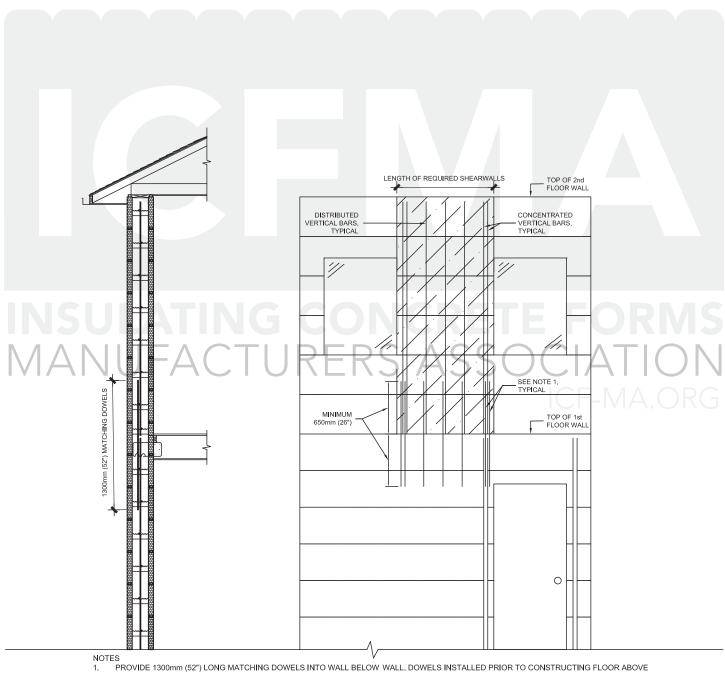


Detail A.8.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof.

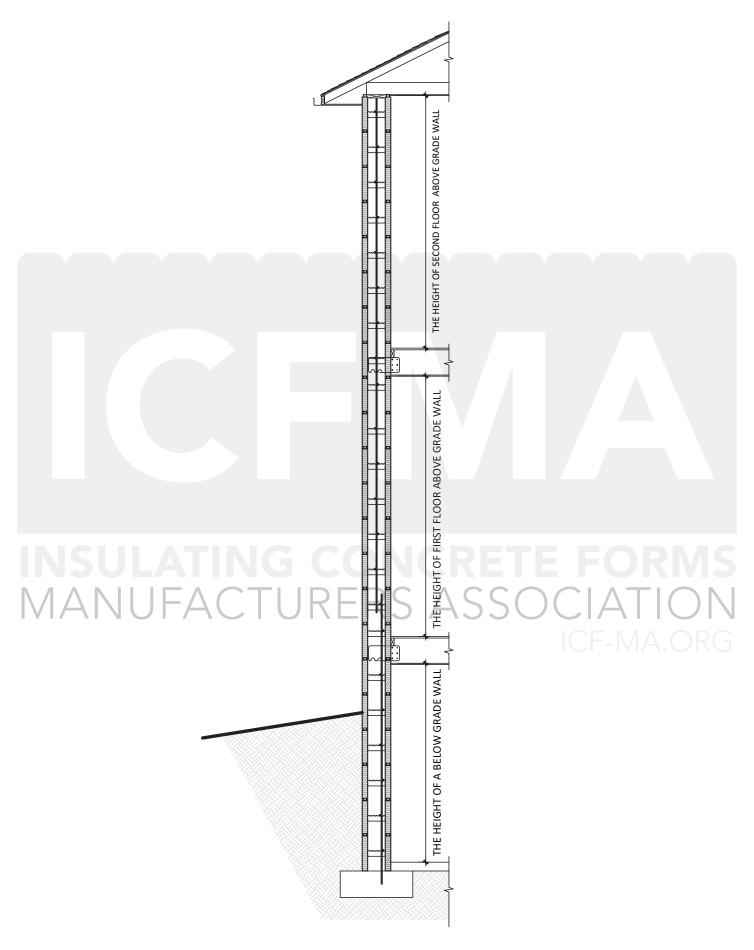

Walkout Basement Wall Configurations


Detail A.9.1. Walkout Basement Wall of a Single Story ICF Structure Supporting Wood Frame Roof.

Detail A.9.2. Walkout Basement Wall of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.


Detail A.9.3. Walkout Basement Wall of a Two-Story Building with Main Floor ICF Walls Supporting Second Story Wood Framed Walls, Floor, and Roof.

Detail A.9.4. Walkout Basement Wall of a Two-Story Wood Framed Structure Supporting Wood Frame Floors, and Roof. Walls, Floor, and Roof.


	No. OF REINF'G BARS	150 mm (6") THICK	200 - 300 mm (8", 10", 12") THICK	
	2 BARS			
	3 BARS			
	4 BARS			
INS	5 BARS			RMS
MA	NUFACT	URERS A	SSUCIAT	ION
	6 BARS			.ORG
	REBAR PLACEMENT NOTE	S:	DS TVDICAL	

- PROVIDE 1 1/2" (40mm) COVER TO REINFORCING BARS, TYPICAL.
 PROVIDE 1 1/2" (40mm) CLEAR SPACING BETWEEN BARS, TYPICAL.
- 3. PLACE BARS AS CLOSE TO THE SIDES OF THE WALL AS MINIMUM COVER PERMITS.

PROVIDE 1300mm (52") LONG MATCHING DOWELS INTO WALL BELOW WALL. DOWELS INSTALLED PRIOR TO CONSTRUCTING FLOOR ABOVE

Detail A.11. Shear Wall Dowels.

Detail A.12. Above and Below Grade Wall Height

Table B.1.1.– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) \leq 0.25 and Hourly Wind Pressure, $q_{1/50} \leq$ 1.05kPa, for ICF Walls with 6"Tie Spacing

\\/a a a a		1.4:11										Vertica	Stee	el (Si	ze and	Spa	cing)									
Wall Height m	Bac Hei	ght					180 k	a/m:	3 (30 p	cf)		Backfil	I Equ	ivale	nt Fluid I	d Der	nsity		720 k	a/m:	3 (45 p	ocf)				
(ft)	m	(ft)	150 mr	n (6") V	Vall	200 mr		-	250 mn		Vall	300 mr	n (12") \	Vall	150 mr	m (6") W	/all	200 mr		_	250 mn		Vall	300 mr	n (12") \	Nall
	1.22	(4.0)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)	10 M @	900	(36)	10 M @	450	(18)	10 M @	600	(24)	10 M @	900	(36)	10 M @	900	(36)
	1.53	(5.0)	10 M @	450	(18)	10 M @	600	(24)	10 M @	900	(36)	10 M @	900	(36)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)
2.44 (8.0)	1.83	(6.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)	15 M @	450	(18)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)
Ì	2.13	(7.0)	15 M @	450	(18)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)
	2.44	(8.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)
	1.22	(4.0)	15 M @	750	(30)	10 M @	600	(24)	10 M @	900	(36)	10 M @	900	(36)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)	10 M @	900	(36)
	1.53	(5.0)	15 M @	750	(30)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	10 M @	900	(36)
2.74	1.83	(6.0)	15 M @	600	(24)	15 M @	900	(36)	10 M @	600	(24)	10 M @	900	(36)	15 M @	450	(18)	15 M @	750	(30)	10 M @	450	(18)	10 M @	600	(24)
(9.0)	2.13	(7.0)	15 M @	450	(18)	15 M @	750	(30)	10 M @	450	(18)	10 M @	750	(30)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)	15 M @	900	(36)
	2.44	(8.0)	15 M @	300	(12)	15 M @	600	(24)	15 M @	900	(36)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)
	2.74	(9.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
	1.22	(4.0)	15 M @	750	(30)	10 M @	600	(24)	10 M @	900	(36)	10 M @	900	(36)	15 M @	750	(30)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)
	1.53	(5.0)	15 M @	750	(30)	15 M @	900	(36)	10 M @	750	(30)	10 M @	900	(36)	15 M @	600	(24)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)
	1.83	(6.0)	15 M @	450	(18)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)
3.05 (10.0)	2.13	(7.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)
	2.44	(8.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)
	2.74	(9.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
	3.05	(10.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	1.22	(4.0)	15 M @	750	(30)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)
	1.53	(5.0)	15 M @	600	(24)	15 M @	900	(36)	10 M @	600	(24)	10 M @	900	(36)	15 M @	450	(18)	15 M @	750	(30)	10 M @	450	(18)	10 M @	750	(30)
	1.83	(6.0)	15 M @	450	(18)	15 M @	750	(30)	10 M @	450	(18)	10 M @	750	(30)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)
3.35	2.13	(7.0)	15 M @	300	(12)	15 M @	600	(24)	15 M @	750	(30)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)
(11.0)	2.44	(8.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
	2.74	(9.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	600	(24)	15 M @	750	(30)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	3.05	(10.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)
N/L	3.35	(11.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
I V I /	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)	15 M @	600	(24)	15 M @	750	(30)	10 M @	600	(24)	10 M @	900	(36)
	1.53	(5.0)	15 M @	600	(24)	15 M @	750	(30)	10 M @	600	(24)	10 M @	900	(36)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)
	1.83	(6.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	15 M @	300	(12)	15 M @	600	(24)	15 M @	750	(30)	15 M @	900	(36)
	2.13	(7.0)	15 M @	300	(12)	15 M @	600	(24)	15 M @	750	(30)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)
3.66 (12.0)	2.44	(8.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
	2.74	(9.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	3.05	(10.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)
	3.35	(11.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.66	(12.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
Horizontal	Block H 12" an	nd 18"	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)
Reinforcement	Block I of 1		10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)

NOTES

^{1.} For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

^{2.} Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

^{3.} This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

Table B.1.1. Continued – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) ≤ 0.25 and Hourly Wind Pressure, $q_{1/50} \le 1.05 kPa$, for ICF Walls with 6"Tie Spacing

Wall Height	Bac	\Lfill													ize and											
m o	Hei	ght				-	160 r	a/mʻ	3 (60 p	cf)		Backfil	l Equ	ivale	ent Fluid	d Der	nsity		200 r	(a/m	13 (75 i	ncf)				
(ft)	m	(ft)	150 mr	m (6") V	Vall	200 mr		_	250 mm		Vall	300 mr	n (12") \	Vall	150 mi	m (6") W	/all	200 mr			250 mr	=	Vall	300 mr	n (12") V	 Nall
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)
	1.53	(5.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	10 M @	900	(36)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	10 M @	750	(30)
2.44 (8.0)	1.83	(6.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)
	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)
	2.44	(8.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	10 M @	900	(36)	15 M @	600	(24)	15 M @	900	(36)	10 M @	450	(18)	10 M @	900	(36)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	750	(30)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	10 M @	600	(24)
2.74	1.83	(6.0)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	10 M @	600	(24)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)
(9.0)	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	10 M @	900	(36)	15 M @	600	(24)	15 M @	750	(30)	15 M @	900	(36)	10 M @	900	(36)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)	10 M @	600	(24)
	1.83	(6.0)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)
3.05 (10.0)	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.05	(10.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	600	(24)	10 M @	900	(36)	15 M @	600	(24)	15 M @	750	(30)	15 M @	900	(36)	10 M @	750	(30)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)	10 M @	600	(24)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)	10 M @	600	(24)
	1.83	(6.0)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)
3.35	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
(11.0)	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	ÀK			15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
D 4 0	3.05	(10.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	3.35	(11.0)			\triangle	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	\triangle		5) (15 M @	150	(6)	15 M @	300	(12)
I V I /	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	600	(24)	10 M @	900	(36)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	10 M @	750	(30)
	1.53	(5.0)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	10 M @	600	(24)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)
	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)
	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
3.66 (12.0)	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.05	(10.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)							15 M @	150	(6)	15 M @	300	(12)
	3.35	(11.0)							15 M @	150	(6)	15 M @	300	(12)							15 M @	150	(6)	15 M @	150	(6)
	3.66	(12.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
Horizontal Reinforcement	Block H 12" ar Block I	nd 18" Height	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)
NOTES	of 1	16"	101111111111111111111111111111111111111	000	(02)	10141 @	550	(OE)	10 141 @	550	(02)	10141 @	000	(02)	10141 8	550	(02)	10141 @	000	(02)	10141 @	000	(OL)	10141 8	550	(32)

NOTES

^{1.} For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

^{2.} Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

^{3.} This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

Table B.1.2.— Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) \leq 0.25 and Hourly Wind Pressure, $q_{1/50} \leq$ 1.05kPa, for ICF Walls with 8"Tie Spacing

Mall Haight	Poo	lzfill												<u> </u>	ize and	<u> </u>													
Wall Height	Bac Hei	ght					180 k	g/m:	3 (30 p	ocf)		Backfil	l Equ	ivale	nt Flui	d Der	nsity		720 k	g/m:	3 (45 p	ocf)							
(ft)	m	(ft)	150 mr	n (6") V	Vall	200 mr		-	250 mn		Vall	300 mr	n (12") \	Vall	150 mi	n (6") W	/all	-	n (8") W	_	250 mr		Vall	300 mr	n (12") \	Wall			
	1.22	(4.0)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	10 M @	800	(32)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	10 M @	800	(32)			
	1.53	(5.0)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	10 M @	800	(32)	15 M @	600	(24)	10 M @	400	(16)	10 M @	800	(32)	10 M @	800	(32)			
2.44 (8.0)	1.83	(6.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	800	(32)			
Ì	2.13	(7.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)			
	2.44	(8.0)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)			
	1.22	(4.0)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)	10 M @	800	(32)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)	10 M @	800	(32)			
	1.53	(5.0)	15 M @	800	(32)	10 M @	400	(16)	10 M @	800	(32)	10 M @	800	(32)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)			
2.74	1.83	(6.0)	15 M @	400	(16)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)			
(9.0)	2.13	(7.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)			
	2.44	(8.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)			
	2.74	(9.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)			
	1.22	(4.0)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)	10 M @	800	(32)	15 M @	800	(32)	10 M @	400	(16)	10 M @	800	(32)	10 M @	800	(32)			
	1.53	(5.0)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)			
	1.83	(6.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)			
3.05 (10.0)	2.13	(7.0)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)	15 M @	800	(32)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)			
(11)	2.44	(8.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)			
_	2.74	(9.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)			
	3.05	(10.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)			
	1.22	(4.0)	15 M @	800	(32)	10 M @	400	(16)	10 M @	800	(32)	10 M @	900	(36)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)			
	1.53	(5.0)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)	10 M @	900	(36)	15 M @	400	(16)	15 M @	800	(32)	10 M @	400	(16)	10 M @	800	(32)			
	1.83	(6.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)			
3.35	2.13	(7.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)			
(11.0)	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)			
	2.74	(9.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)			
	3.05	(10.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)			
$NA\Delta$	3.35	(11.0)			\triangle	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	Δ			15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)			
TV 17	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	800	(32)	10 M @	800	(32)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)			
	1.53	(5.0)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)			
Ī	1.83	(6.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	800	(32)			
	2.13	(7.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)			
3.66 (12.0)	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)			
	2.74	(9.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)			
	3.05	(10.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)			
Ī	3.35	(11.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)			
Ī	3.66	(12.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)							15 M @	200	(8)	15 M @	200	(8)			
Horizontal	Block H 12" ar		10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)			
Reinforcement	Block I	Height	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)			

NOTES

^{1.} For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

^{2.} Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

^{3.} This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

Table B.1.2. Continued – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) ≤ 0.25 and Hourly Wind Pressure, $q_{1/50} \le 1.05 kPa$, for ICF Walls with 8"Tie Spacing

Wall Height	Bac	kfill													ze and											
m	Hei	ght				c	960 k	a/m:	3 (60 p	cf)		Backfil	I Equ	ivale	nt Fluid	d Der	nsity		200 k	ka/m	ı3 (75 ı	ncf)				
(ft)	m ((ft)	150 mr	n (6") V	Vall	200 mr		_	250 mm		Vall	300 mr	n (12") \	Vall	150 mr	n (6") W	/all	200 mr			250 mr	=	Vall	300 mr	n (12") \	Nall
	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	800	(32)	10 M @	800	(32)	15 M @	600	(24)	10 M @	400	(16)	10 M @	800	(32)	10 M @	800	(32)
	1.53	(5.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	15 M @	400	(16)	15 M @	800	(32)	15 M @	800	(32)	10 M @	800	(32)
2.44 (8.0)	1.83	(6.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	400	(16)	15 M @	800	(32)	15 M @	800	(32)
	2.13	(7.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)
	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	15 M @	600	(24)	15 M @	800	(32)	10 M @	400	(16)	10 M @	800	(32)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	800	(32)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)
2.74	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	800	(32)	10 M @	600	(24)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
(9.0)	2.13	(7.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	15 M @	600	(24)	15 M @	200	(8)	15 M @	800	(32)	10 M @	800	(32)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)
_	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	800	(32)	15 M @	800	(32)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
3.05 (10.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	V			15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	3.05	(10.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	600	(24)	10 M @	800	(32)	15 M @	600	(24)	15 M @	800	(32)	15 M @	800	(32)	10 M @	800	(32)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)
	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
3.35	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
(11.0)	2.44	(8.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)		$\Delta \setminus$		15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
N 4 4	3.05	(10.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)
$\Lambda \Lambda \Delta$	3.35	(11.0)	Ш	E,	\triangle	15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)	\triangle		5				15 M @	200	(8)	15 M @	200	(8)
1 4 17	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	600	(24)	10 M @	800	(32)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	800	(32)
	1.53	(5.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	800	(32)	10 M @	600	(24)	15 M @	400	(16)	15 M @	400	(16)	15 M @	800	(32)	15 M @	800	(32)
-	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)
3.66 (12.0)	2.44	(8.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	3.05	(10.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)							15 M @	200	(8)	15 M @	200	(8)
	3.35	(11.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	3.66	(12.0)							15 M @	200	(8)	15 M @	200	(8)										15 M @	200	(8)
Horizontal Reinforcement	Block H 12" an Block H of 1	nd 18" Height	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)

^{1.} For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

^{2.} Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

^{3.} This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

Table B.2.1. – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25 < Sa(0.2) \le 0.70$ and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, for ICF Walls with 6"Tie Spacing

Mall Haight	Poo	Lfill												<u> </u>	ize and											
Wall Height	Bac Hei	ght					180 k	a/m'	3 (30 p	cf)		Backfil	Equ	ivale	ent Fluid	d Der	nsity		720 k	a/mʻ	3 (45 p	ocf)				
(ft)	m	(ft)	150 mr	n (6") V	Vall	200 mr		_	250 mn		Vall	300 mr	n (12") V	Vall	150 mi	m (6") W	/all		n (8") W		250 mn		Vall	300 mr	n (12") V	Wall
	1.22	(4.0)	10 M @	450	(18)	10 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
2.44 (8.0)	1.83	(6.0)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	600	(24)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)
	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
	2.44	(8.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)
2.74	1.83	(6.0)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)
(9.0)	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)
3.05 (10.0)	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.05	(10.0)	15 M @	150	(6)				15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)
3.35	2.13	(7.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
(11.0)	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	İK			15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.05	(10.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
N/L	3.35	(11.0)			\triangle	15 M @	150	(6)	15 M @	150	_(6)_	15 M @	300	(12)	\triangle '			15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
1 7 17	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)
	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
3.66 (12.0)	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)
ſ	2.74	(9.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
ſ	3.05	(10.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	3.35	(11.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)							15 M @	150	(6)	15 M @	150	(6)
	3.66	(12.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
Horizontal	Block H 12" an	id 18"	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)
Reinforcement	Block I of 1		15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)

- 1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
- 2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.
- 3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
- 4. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars, as sh

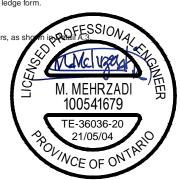


Table B.2.1. Continued – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25 < Sa(0.2) \le 0.70$ and Hourly Wind Pressure, $q_{1/50} \le 1.05 kPa$, for ICF Walls with 6"Tie Spacing

Mall Haight		14:11												<u> </u>	ize and	<u> </u>										
Wall Height m	Bac Hei	ght				(960 k	a/m:	3 (60 p	ocf)		Backfil	I Equ	ivale	ent Fluid I	d Der	nsity		200 k	ra/m	3 (75)	ncf)				
(ft)	m	(ft)	150 mr	n (6") V	Vall	200 mr			250 mn		Vall	300 mr	n (12") \	Nall	150 mi	m (6") W	/all		n (8") W		250 mn		Vall	300 mr	n (12") \	Wall
	1.22	(4.0)	15 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
2.44 (8.0)	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)
` ′	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
2.74	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
(9.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
	2.74	(9.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)
	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
3.05 (10.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
, ,	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	V			15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.05	(10.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)
	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
3.35	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
(11.0)	2.44	(8.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.74	(9.0)		$\Delta \setminus$		15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	3.05	(10.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)							15 M @	150	(6)	15 M @	300	(12)
N/I	3.35	(11.0)			\triangle				15 M @	150	(6)	15 M @	150	(6)	Δ		5) (15 M @	150	(6)	15 M @	150	(6)
I V I /	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)
j	1.83	(6.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
3.66 (12.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
j	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	3.35	(11.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	3.66	(12.0)							15 M @	150	(6)	15 M @	150	(6)										15 M @	150	(6)
Horizontal	Block H 12" ar		15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)
Reinforcement	Block I		15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)

- 1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
- 2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.
- 3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
- 4. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars, as sh

Table B.2.2. – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25 < Sa(0.2) \le 0.70$ and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, for ICF Walls with 8"Tie Spacing

Mall Haight	Bac	14:11												<u> </u>	ize and											
Wall Height	Hei	ght				4	180 k	a/m:	3 (30 p	cf)		Backfill	l Equ	ivale	ent Fluid I	d Der	nsity		720 k	a/m:	3 (45 r	ocf)				
(ft)	m	(ft)	150 mi	m (6") V	Vall	200 mr		-	250 mn		Vall	300 mn	n (12") V	Vall	150 mi	n (6") W	/all		n (8") W		250 mr		Vall	300 mr	n (12") V	Wall
	1.22	(4.0)	10 M @	400	(16)	10 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)
Ī	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
2.44 (8.0)	1.83	(6.0)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	600	(24)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)
	2.13	(7.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)
2.74	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)
(9.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)
3.05 (10.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	V			15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	3.05	(10.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
3.35	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)
(11.0)	2.44	(8.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)		$\Delta \setminus$		15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	İK			15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	3.05	(10.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)		(15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)
$\Lambda \Lambda \Delta$	3.35	(11.0)			\triangle	15 M @	200	(8)	15 M @	200	_(8)_	15 M @	200	(8)	\triangle					Ť	15 M @	200	(8)	15 M @	200	(8)
I V I /	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
3.66 (12.0)	2.44	(8.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	3.05	(10.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	3.35	(11.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	3.66	(12.0)							15 M @	200	(8)	15 M @	200	(8)										15 M @	200	(8)
Horizontal	Block H 12" ar		10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)
Reinforcement	Block I	Height 16"	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)

- 1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
- 2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.
- 3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
- 4. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars, as sh

Table B.2.2. Continued – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 0.25 < Sa(0.2) \leq 0.70 and Hourly Wind Pressure, q_{1/50} \leq 1.05kPa, for ICF Walls with 8"Tie Spacing

Wall Height m (ft)	Bac														ize and											
(ft)	неі	ight)60 k	a/m ^o	3 (60 p	of)		Backfil	l Equ	ivale	nt Fluid	d Der	nsity		200 l	ra/m	3 (75 ı	nof)				
	m	(ft)	150 mr	m (6") V	Vall	200 mr		_	250 mm		Vall	300 mr	n (12") \	Vall	150 mr	m (6") W	/all	200 mr			250 mn	=	Vall	300 mr	n (12") \	Wall
	1.22	(4.0)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)
Ī	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
2.44 (8.0)	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)
	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
_	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
2.74	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
(9.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)
	2.44	(8.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
3.05 (10.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.44	(8.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	V			15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	3.05	(10.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
3.35	2.13	(7.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
(11.0)	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.74	(9.0)		Δ		15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	İK			15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)
	3.05	(10.0)					_		15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
$\Lambda / L L$	3.35	(11.0)			\triangle		· I		15 M @	200	(8)	15 M @	200	(8)	\triangle				(15 M @	200	(8)
1 7 17	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)
_	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.13	(7.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
3.66 (12.0)	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	3.05	(10.0)							15 M @	200	(8)	15 M @	200	(8)										15 M @	200	(8)
	3.35	(11.0)										15 M @	200	(8)										15 M @	200	(8)
	3.66	(12.0)										15 M @	200	(8)												$oxed{oxed}$
Horizontal Reinforcement	Block H 12" ar Block I of	nd 18" Height	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)

- 1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
- 2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.
- 3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
- 4. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars, as sh

Table B.3.1. – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70 < Sa(0.2) \le 1.2$ and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, for ICF Walls with 6"Tie Spacing

VA/= II		1.60										Vertica	Stee	el (Si	ize and	Spa	cing)									
Wall Height	Bac Hei	ght					180 1	a/mʻ	a (30 p	ocf)		Backfil	Equ	ivale	ent Fluid	d Der	nsity		720 4	a/mʻ	3 (45 p	ocf)				
(ft)	m	(ft)	150 mr	n (6") V	Vall	200 mr			250 mn		Vall	300 mr	n (12") V	Nall	150 mi	n (6") W	/all		n (8") W		250 mn		Vall	300 mr	n (12") V	Wall
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
,	1.53	(5.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
2.44 (8.0)	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
, ` ´	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
,	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)
2.74	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)
(9.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.74	(9.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
3.05 (10.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
	2.44	(8.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	V			15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	3.05	(10.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
3.35	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
(11.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	2.74	(9.0)		$\Delta \setminus$		15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	İK			15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	3.05	(10.0)						/ [15 M @	150	(6)	15 M @	150	(6)				(15 M @	150	(6)	15 M @	150	(6)
$\Lambda \Lambda \Delta$	3.35	(11.0)		\vdash	\triangle				15 M @	150	_(6)_	15 M @	150	(6)	\triangle ') (Ť	15 M @	150	(6)	15 M @	150	(6)
1 4 17	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	2.13	(7.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)				15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)
3.66 (12.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	3.35	(11.0)							15 M @	150	(6)	15 M @	150	(6)										15 M @	150	(6)
	3.66	(12.0)										15 M @	150	(6)										15 M @	150	(6)
Horizontal	Block H 12" ar	nd 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement	Block I of		15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

- 1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
- 2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.
- 3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
- Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in De
- 5. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown

Table B.3.1. Continued – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 0.70 < Sa(0.2) ≤ 1.2 and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 6"Tie Spacing

Wall Height	Poo	Jefill												<u> </u>	ze and											
m o	Bac Hei	ght				c	960 k	a/m:	3 (60 p	ocf)		Backfil	l Equ	ivale	nt Fluid I	d Der	nsity		200 k	ra/m	3 (75)	ncf)				
(ft)	m	(ft)	150 mr	m (6") V	Vall	200 mr		-	250 mn		Vall	300 mr	n (12") V	Vall	150 mr	m (6") W	/all	200 mr			250 mn		Vall	300 mr	n (12") V	Vall
	1.22	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
-	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)
2.44 (8.0)	1.83	(6.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)
(= = /	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
Ī	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)
2.74	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
(9.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
3.05 (10.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	V						15 M @	150	(6)	15 M @	300	(12)
	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
3.35	2.13	(7.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
(11.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	2.74	(9.0)		$\Delta \setminus$					15 M @	150	(6)	15 M @	150	(6)	K	7					15 M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
N / Δ	3.35	(11.0)			Δ					7		15 M @	150	(6)	Δ) (15 M @	150	(6)
1 7 17	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
Ī	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
	2.13	(7.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
3.66 (12.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)							15 M @	150	(6)	15 M @	150	(6)
` ''	2.74	(9.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)										15 M @	150	(6)										15 M @	150	(6)
	3.35	(11.0)										15 M @	150	(6)										15 M @	150	(6)
	3.66	(12.0)										15 M @	150	(6)												
Horizontal	Block H		15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement		Height	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

- 1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
- 2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.
- 3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
- Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in De
- 5. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown

Table B.3.2. – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70 < \text{Sa}(0.2) \le 1.2$ and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05 \text{kPa}$, for ICF Walls with 8"Tie Spacing

												Vertica	Stee	el (S	ize and	Spa	cina)									
Wall Height m	Bac Hei	aht					100 '							<u> </u>	nt Flui	<u> </u>			700 !	l: ·	0 /45					
(ft)	m	(ft)	150 mr	m (6") V	Vall		<u>180 K</u> m (8") V	_	3 (30 p		Vall	300 mr	n (12") \	 Vall	150 mi	m (6") W	/all	-	<u>/20 K</u> n (8") W		3 (45 p		 Vall	300 mr	n (12") \	 Wall
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16
	1.53	(5.0)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16
2.44 (8.0)	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
(0.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16
	2.44	(8.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16
	1.53	(5.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16
2.74	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
(9.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16
	2.44	(8.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16
	1.53	(5.0)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
3.05 (10.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16
	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)	V						15 M @	200	(8)	15 M @	200	(8)
	3.05	(10.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16
3.35	2.13	(7.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
(11.0)	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)
	2.74	(9.0)		$\Delta \setminus$					15 M @	200	(8)	15 M @	200	(8)	. K						15 M @	200	(8)	15 M @	200	(8)
B 4 A	3.05	(10.0)			_				15 M @	200	(8)	15 M @	200	(8)										15 M @	200	(8)
N/L	3.35	(11.0)			\triangle					2	_	15 M @	200	(8)	\triangle) (15 M @	200	(8)
1 4 17	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16
	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16
3.66 (12.0)	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	3.05	(10.0)										15 M @	200	(8)										15 M @	200	(8)
	3.35	(11.0)										15 M @	200	(8)												
	3.66	(12.0)																								
Horizontal	Block H 12" ar	nd 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement	Block I of		15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

- 1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
- 2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.
- 3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
- 4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in De
- 5. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown

Table B.3.2. Continued– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 0.70 < Sa(0.2) ≤ 1.2 and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 8"Tie Spacing

	_										,	Vertica	Stee	el (S	ize and	Spa	cing)								
Wall Height m	Hei	ckfill ight					260 1	a/m	2 (60 5	of)		Backfil	l Equ	ivale	nt Flui	d Der	nsity		200 1	(a/m	2 (75	oof)				
(ft)	m	(ft)	150 m	m (6") V	Vall		m (8") V	_	3 (60 p		Vall	300 mr	n (12") \	Vall	150 mi	m (6") W	Vall	200 mr			3 (75 250 mr	p <u>CI)</u> n (10") \	Vall	300 mr	n (12") V	 Wall
	1.22	(4.0)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)
2.44 (8.0)	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
(0.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.44	(8.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)
2.74	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)
(9.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
3.05 (10.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)
	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)	V						15 M @	200	(8)	15 M @	200	(8)
	3.05	(10.0)							15 M @	200	(8)	15 M @	200	(8)										15 M @	200	(8)
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	1.83	(6.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
3.35	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
(11.0)	2.44	(8.0)		<u> </u>					15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)	. K								K	15 M @	200	(8)
B 4 A	3.05	(10.0)							Ĺ.,			15 M @	200	(8)										15 M @	200	(8)
Λ / L	3.35	(11.0)			\triangle			Ц		2		15 M @	200	(8)	\triangle		5) (Ц) [`	M
1 4 17	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
	1.83	(6.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
0.00	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
3.66 (12.0)	2.44	(8.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	2.74	(9.0)										15 M @	200	(8)										15 M @	200	(8)
	3.05	(10.0)										15 M @	200	(8)												
	3.35	(11.0)																								
	3.66	(12.0)																								
Horizontal	12" ar		15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement		Height 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

- 1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
- 2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.
- 3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
- 4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Details 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Details 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Details 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Details 13" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Details 13" o.c. where 14" spacing o.c. is specified for horizontal bars, as shown in Details 13" o.c. where 14" spacing o.c. is specified for horizontal bars, as shown in Details 13" o.c. where 14" spacing o.c. is specified for horizontal bars, as shown in Details 13" o.c. where 14" o.c. where 15" o.c. where
- 5. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown

Table B.4.1. – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 1.2 < Sa(0.2) \leq 1.75 and Hourly Wind Pressure, $q_{_{1/50}} \leq$ 1.05kPa, for ICF Walls with 6"Tie Spacing

\A,												Vertica	Stee	el (Si	ize and	Spa	cing))								
Wall Height m	Bac Hei	aht					100 1	a/m	3 (30 p	of\		Backfil	l Equ	ivale	nt Flui	d Der	nsity		720 1-	a/m'	3 (45 r	of\				
(ft)	m	(ft)	150 mr	m (6") V	Vall		100 K n (8") V	_	250 mn		Vall	300 mr	n (12") \	Vall	150 mi	n (6") W	/all	200 mr			250 mr		Vall	300 mr	n (12") V	 Wall
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
2.44 (8.0)	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
(,	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
	2.44	(8.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
2.74	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
(9.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	1.22	(4.0)	15 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
3.05 (10.0)	2.13	(7.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)	V			15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	1.22	(4.0)	15 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)
3.35	2.13	(7.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
(11.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)
	2.74	(9.0)		$\Delta \setminus$					15 M @	150	(6)	15 M @	150	(6)	ÅK						15 M @	150	(6)	15 M @	150	(6)
D 4 0	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)										15 M @	150	(6)
N/L	3.35	(11.0)			\triangle					<		15 M @	150	(6)	\triangle) (15 M @	150	(6)
1 7 17	1.22	(4.0)	15 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)
	1.83	(6.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)
	2.13	(7.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
3.66 (12.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	2.74	(9.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)										15 M @	150	(6)										15 M @	150	(6)
	3.35	(11.0)										15 M @	150	(6)												
	3.66	(12.0)																								
Horizontal	Block H 12" ar	nd 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement	Block I of		15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

- 1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
- 2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.
- 3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
- Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in De
- 5. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown

Table B.4.1. Continued– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 1.2 < Sa(0.2) \leq 1.75 and Hourly Wind Pressure, q_{1/50} \leq 1.05kPa, for ICF Walls with 6"Tie Spacing

												Vortice	Stor	1 (6:	ize and	Snor	cinc'									
Wall Height	Bac														nt Flui											
m (ft)	Hei m (ght (ft)						-	3 (60 p									1		_	3 (75	=		1		
(1-7)		,	150 mr	n (6") V	Vall	200 mr	n (8") V	/all	250 mn	n (10") V	Vall	300 mr	n (12") \	Vall	150 mi	m (6") W	Vall	200 mr	n (8") W	/all	250 mr	n (10") V	Vall	300 mr	n (12") \	Nall
	1.22	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12
2.44 (8.0)	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18
	2.13	(7.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12
	2.44	(8.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12
	1.53	(5.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12
2.74	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18
(9.0)	2.13	(7.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12
	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)
	1.22	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12
	1.53	(5.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18
3.05 (10.0)	2.13	(7.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12
	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)
	2.74	(9.0)							15 M @	150	(6)	15 M @	150	(6)	V						15 M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	1.22	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18
	1.83	(6.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18
3.35	2.13	(7.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
(11.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	2.74	(9.0)		$\Delta \setminus$					15 M @	150	(6)	15 M @	150	(6)	İK						15 M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)										15 M @	150	(6)										15 M @	150	(6)
$\Lambda \Lambda \Delta$	3.35	(11.0)		\perp	\triangle					γ		15 M @	150	(6)						·				15 M @	150	(6)
I V I /	1.22	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12
	1.53	(5.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18
	1.83	(6.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12
	2.13	(7.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12
3.66 (12.0)	2.44	(8.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	2.74	(9.0)										15 M @	150	(6)										15 M @	150	(6)
	3.05	(10.0)										15 M @	150	(6)												
Ī	3.35	(11.0)																								
	3.66	(12.0)																								
Horizontal	Block H		15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12
Reinforcement	Block I of 1	leight	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12

- 1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
- 2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.
- 3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
- 4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Dej
- 5. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown

Table B.4.2. – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 1.2 < Sa(0.2) \leq 1.75 and Hourly Wind Pressure, $q_{_{1/50}} \leq$ 1.05kPa, for ICF Walls with 8"Tie Spacing

Wall Height	Poo	Jefill													ize and											
m o	Bac Hei	ght				_	180 k	a/m:	3 (30 p	ocf)		Backfil	l Equ	ivale	ent Fluid I	d Der	nsity		720 k	a/m:	3 (45 p	ocf)				
(ft)	m	(ft)	150 mi	m (6") V	/all	200 mr			250 mn		Vall	300 mr	n (12") V	Vall	150 mr	m (6") W	/all	200 mr		_	250 mr		Vall	300 mr	n (12") V	 Vall
	1.22	(4.0)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)
2.44 (8.0)	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
, ,	2.13	(7.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	1.22	(4.0)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)
2.74	1.83	(6.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
(9.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)
	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	1.22	(4.0)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)
	1.83	(6.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
3.05 (10.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.44	(8.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)	V									15 M @	200	(8)
	3.05	(10.0)										15 M @	200	(8)										15 M @	200	(8)
	1.22	(4.0)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
	1.83	(6.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
3.35	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)
(11.0)	2.44	(8.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	2.74	(9.0)		$\Delta \setminus$								15 M @	200	(8)									K	15 M @	200	(8)
	3.05	(10.0)										15 M @	200	(8)												
$\mathbb{N}/\mathbb{N}/\mathbb{N}$	3.35	(11.0)			\triangle					2	_	R	5		∇		5) (П
I V I /	1.22	(4.0)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
	1.83	(6.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.13	(7.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
3.66 (12.0)	2.44	(8.0)										15 M @	200	(8)										15 M @	200	(8)
	2.74	(9.0)										15 M @	200	(8)												
	3.05	(10.0)																								
	3.35	(11.0)																								
	3.66	(12.0)																								
Horizontal Reinforcement	Block H 12" ar Block I	nd 18"	15 M @	300 300	(12)	15 M @	300 300	(12) (12)		300	(12)	15 M @	300	(12)	15 M @	300	(12)		300	(12)	15 M @	300	(12)	15 M @	300	(12)
NOTES	of 1	16"	W IVI €	300	(12)	IS IVI W	300	(12)	W IVI €	300	(12)	W IVI €	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

- 1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
- 2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.
- 3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
- 4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Dej
- 5. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown

Table B.4.2. Continued– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 1.2 < Sa(0.2) ≤ 1.75 and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 8"Tie Spacing

												Vertice	Stor	1 (6:	ize and	Snar	oina)									
Wall Height	Bac														nt Flui											
m (ft)	Hei m	ght (ft)						_	3 (60 p								loney		200 k	(g/m	3 (75)	ocf)				
(/		(,	150 mi	m (6") V	Vall	200 mr	n (8") W	/all	250 mn	n (10") V	Vall	300 mr	n (12") \	Vall	150 mi	n (6") W	/all	200 mr	n (8") W	/all	250 mn	n (10") V	Vall	300 mr	n (12") \	Wall
	1.22	(4.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24
2.44 (8.0)	1.83	(6.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16
	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16
	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16
	1.22	(4.0)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
2.74	1.83	(6.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16
(9.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16
	2.44	(8.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	1.22	(4.0)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
	1.83	(6.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16
3.05 (10.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)
()	2.44	(8.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
Ī	2.74	(9.0)										15 M @	200	(8)	V									15 M @	200	(8)
	3.05	(10.0)										15 M @	200	(8)												
	1.22	(4.0)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
	1.83	(6.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
3.35	2.13	(7.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
(11.0)	2.44	(8.0)										15 M @	200	(8)										15 M @	200	(8)
	2.74	(9.0)		$\Delta \setminus$								15 M @	200	(8)	K									A N		
	3.05	(10.0)																								
N / I	3.35	(11.0)			Λ					γ		R	5		Δ											
I V I /	1.22	(4.0)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
	1.83	(6.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16
	2.13	(7.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
3.66 (12.0)	2.44	(8.0)										15 M @	200	(8)										15 M @	200	(8)
` ''	2.74	(9.0)																								
	3.05	(10.0)																								
	3.35	(11.0)																								
	3.66	(12.0)																								T
Horizontal	Block H	eight of nd 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12
Reinforcement	Block I of 1	Height	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

- 1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
- 2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.
- 3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
- 4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Det
- 5. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown

Table A.1.1. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa,ICF ≤ 0.2 and Hourly Wind Pressure, $q_{1/50} \le 1.05$ for ICF Walls with 6"Tie Spacing

Wall I	Height				Distributed	Vertical	Reinfor	cement (Siz	ze and S	spacing))		
m	(ft)	150 m	m (6") W	/all	200 m	m (8") W	/all	250 mr	m (10") V	Vall	300 mr	m (12") V	Vall
Hourly Wind Pressu	re q _{1/50} ≤ 0.5 kPa				,								
2.44	(8)	10 M @	600	(24)	10 M @	750	(30)	10 M @	900	(36)	10 M @	1200	(48)
2.75	(9)	10 M @	600	(24)	10 M @	750	(30)	10 M @	900	(36)	10 M @	1200	(48)
3.05	(10)	15 M @	1050	(42)	10 M @	750	(30)	10 M @	900	(36)	10 M @	1200	(48)
3.66	(12)	15 M @	750	(30)	15 M @	1050	(42)	10 M @	600	(24)	10 M @	1200	(48)
4.27	(14)	15 M @	450	(18)	15 M @	750	(30)	15 M @	1050	(42)	10 M @	1200	(48)
4.88	(16)	15 M @	300	(12)	15 M @	600	(24)	15 M @	750	(30)	10 M @	900	(36)
Hourly Wind Pressur	re q _{1/50} ≤ 0.75 kPa						,						
2.44	(8)	15 M @	1050	(42)	10 M @	750	(30)	10 M @	900	(36)	10 M @	1200	(48)
2.75	(9)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)	10 M @	1200	(48)
3.05	(10)	15 M @	600	(24)	15 M @	1050	(42)	10 M @	600	(24)	10 M @	1200	(48)
3.66	(12)	15 M @	300	(12)	15 M @	750	(30)	15 M @	900	(36)	10 M @	1200	(48)
4.27	(14)	15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)	10 M @	900	(36)
4.88	(16)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	900	(36)
Hourly Wind Pressur	re q _{1/50} ≤ 1.05 kPa												
2.44	(8)	15 M @	750	(30)	15 M @	1050	(42)	10 M @	600	(24)	10 M @	1200	(48)
2.75	(9)	15 M @	600	(24)	15 M @	900	(36)	15 M @	1200	(48)	10 M @	1200	(48)
3.05	(10)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	10 M @	900	(36)
3.66	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	10 M @	750	(30)
4.27	(14)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	900	(36)
4.88	(16)				15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)
Horizontal	Block Height of 12" and 18"	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)
Reinforcement	Block Height of 16"	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)
OTES	OTAC	7 7 7					10			- 1 /			

 $[\]boldsymbol{S}_{\text{a,ICF}}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

This table is to be used in conjunction with the "Design Limitations."

Bolded data indicates reinforcing for ground floor concrete walls only. Second floor concrete walls to be limited in height to 3.0m (10'-0").

Table A.1.2. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a,ICF} \leq 0.2$ and Hourly Wind Pressure, $q_{1/50} \leq 1.05$ for Walls with 8"Tie Spacing

Wall	Height				Distributed	Vertical	Reinfor	cement (Siz	ze and S	pacing)		
m	(ft)	150 m	m (6") W	/all	200 m	m (8") W	/all	250 mr	n (10") V	Vall	300 mr	n (12") V	Vall
Hourly Wind Pressure	e q _{1/50} ≤ 0.5 kPa												
2.44	(8)	10 M @	600	(24)	10 M @	800	(32)	10 M @	1000	(40)	10 M @	1200	(48)
2.75	(9)	10 M @	600	(24)	10 M @	800	(32)	10 M @	1000	(40)	10 M @	1200	(48)
3.05	(10)	15 M @	1000	(40)	10 M @	600	(24)	10 M @	800	(32)	10 M @	1200	(48)
3.66	(12)	15 M @	600	(24)	15 M @	1000	(40)	10 M @	600	(24)	10 M @	1200	(48)
4.27	(14)	15 M @	400	(16)	15 M @	800	(32)	15 M @	1000	(40)	10 M @	1200	(48)
4.88	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	1000	(40)
Hourly Wind Pressure	e q _{1/50} ≤ 0.75 kPa		Y		· ·			Y	7	Y		Y	
2.44	(8)	15 M @	1200	(48)	10 M @	800	(32)	10 M @	1200	(48)	10 M @	1200	(48)
2.75	(9)	15 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	1200	(48)
3.05	(10)	15 M @	800	(32)	15 M @	1200	(48)	10 M @	800	(32)	10 M @	1200	(48)
3.66	(12)	15 M @	400	(16)	15 M @	800	(32)	15 M @	1200	(48)	10 M @	1200	(48)
4.27	(14)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	1200	(48)
4.88	(16)	15 M @	300	(12)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
Hourly Wind Pressure	e q _{1/50} ≤ 1.05 kPa												
2.44	(8)	15 M @	600	(24)	15 M @	1000	(40)	10 M @	600	(24)	10 M @	1200	(48)
2.75	(9)	15 M @	600	(24)	15 M @	800	(32)	15 M @	1200	(48)	10 M @	1200	(48)
3.05	(10)	15 M @	400	(16)	15 M @	800	(32)	15 M @	800	(32)	10 M @	800	(32)
3.66	(12)	15 M @	300	(12)	15 M @	400	(16)	15 M @	600	(24)	10 M @	800	(32)
4.27	(14)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	15 M @	800	(32)
4.88	(16)				15 M @	300	(12)	15 M @	400	(16)	15 M @	600	(24)
Horizontal	Block Height of 12" and 18"	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)
Reinforcement	Block Height of 16"	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)

- 1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
- 2. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.
- 3. This table is to be used in conjunction with the "Design Limitations."
- 4. Bolded data indicates reinforcing for ground floor concrete walls only. Second floor concrete walls to be limited in height to 3.0m (10'-0").
- 5. Alternating vertical bar spacing of 8" o.c. and 16" o.c. may be used to achieve an average spacing of 12" o.c. where 12" o.c. spacing is specified for vertical bars, as shown in Detail A.5.

Table A.2.1. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a,ICF} \ge 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ for ICF Walls with 6"Tie Spacing

Wall H	Height				Distributed '	Vertical	Reinfor	cement (Siz	e and S	pacing)		
m	(ft)	150 m	m (6") W	all	200 mi	m (8") W	all	250 mn	n (10") V	Vall	300 mr	n (12") V	Vall
Seismic zone classific	cation, S _{a,ICF} ≤ 0.4												
2.44	(8)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	450	(18)
2.75	(9)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	450	(18)
3.05	(10)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	450	(18)
3.66	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)
4.27	(14)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)
4.88	(16)				15 M @	300	(12)	15 M @	300	(12)	10 M @	450	(18)
Horizontal	Block Height of 12" and 18"	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)
Reinforcement	Block Height of 16"	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
Seismic zone classific	cation, S _{a,ICF} ≤ 0.7												
2.44	(8)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
2.75	(9)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
3.05	(10)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
3.66	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
4.27	(14)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
4.88	(16)				15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)
Horizontal	Block Height of 12" and 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
Reinforcement	Block Height of 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
Seismic zone classific	cation, S _{a,ICF} ≤ 1.05												
2.44	(8)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
2.75	(9)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
3.05	(10)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
3.66	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
4.27	(14)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
4.88	(16)				15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
Horizontal	Block Height of 12" and 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement	Block Height of 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

- 1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
- 2. This table is to be used in conjunction with the "Design Limitations."
- 3. Bolded data indicates reinforcing for ground floor concrete walls only. Second floor concrete walls to be limited in height to 3.0m (10'-0").
- 4. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.
- 5. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars, as shown in Detail A.3.
 6. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Detail A.4.
- 7. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Detail A.5.

Table A.2.2. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a,ICF} \ge 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ for ICF Walls with 8"Tie Spacing

Wall H	Height				Distributed '	Vertical	Reinfor	cement (Siz	e and S	pacing)		
m	(ft)	150 m	m (6") W	/all	200 mi	n (8") W	/all	250 mr	n (10") V	Vall	300 mr	n (12") V	Vall
Seismic zone classific	cation, S _{a,ICF} ≤ 0.4												
2.44	(8)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	400	(16)
2.75	(9)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	400	(16)
3.05	(10)	15 M @	400	(16)	10 M @	300	(12)	10 M @	300	(12)	10 M @	400	(16)
3.66	(12)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
4.27	(14)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
4.88	(16)				15 M @	300	(12)	15 M @	400	(16)	10 M @	400	(16)
Horizontal	Block Height of 12" and 18"	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)
Reinforcement	Block Height of 16"	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
Seismic zone classific	cation, S _{a,ICF} ≤ 0.7												
2.44	(8)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
2.75	(9)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
3.05	(10)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
3.66	(12)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
4.27	(14)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
4.88	(16)				15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
_ Horizontal	Block Height of 12" and 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement	Block Height of 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Seismic zone classific	cation, S _{a,ICF} ≤ 1.05												
2.44	(8)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
2.75	(9)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
3,05	(10)/	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
3.66	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
4.27	(14)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
4.88	(16)				15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Horizontal	Block Height of 12" and 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement	Block Height of 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

- 1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
- 2. This table is to be used in conjunction with the "Design Limitations."
- 3. Bolded data indicates reinforcing for ground floor concrete walls only. Second floor concrete walls to be limited in height to 3.0m (10'-0").
- 4. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.
- 5. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars, as shown in Detail A.3.
- 6. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Detail A.4.
- 7. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Detail A.5.
- 8. Alternating vertical bar spacing of 8" o.c. and 16" o.c. may be used to achieve an average spacing of 12" o.c. where 12" o.c. spacing is specified for vertical bars, as shown in Detail A.6.

Table A.3. Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 0.5$ kPa (in a Building Without Walkout Basement)

Wall He	ight			Number of	Concentr			einforcing E Classifica		d of Each	Shear Wal		
m	(ft)		S _{a,ICF} ≤	0.085			S _{a,ICF} ≤				S	≤ 0.2	
Second Floor Wa	Ils of Two Sto	ry ICF Str			ood Frame	Roof	a,iOi				a,101		
		Number a											
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-4"	3 x 3'-6"	4 x 2'-8"	1 x 12'-0"	2 x 7'-0"	3 x 5'-0"	4 x 3'-8"
2.44	(8)	2	2	3	3	2	2	3	3	2	2	2	3
2.75	(9)	2	3	3	3	2	3	3	3	2	3	3	3
3.05	(10)	2	3	4	4	2	4	4	4	2	3	3	4
Main Floor Walls	of One Story	ICF Struc	ture Suppo	orting Woo	d Frame F	Roof							
		Number a	nd length	of shear w	alls provid	ed							
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2x5'-4"	3 x 3'-6"	4 x 2'-8"	1 x 12'-0"	2 x 7'-0"	3 x 5'-0"	4 x 3'-8"
2.44	(8)	2	2	2	2	2	2	2	3	2	2	2	2
2.75	(9)	2	2	3	3	2	2	3	3	2	2	2	3
3.05	(10)	2	3	3	3	2	3	3	4	2	2	3	3
3.66	(12)	2	3	4		2	4	4	4	2	3	4	4
4.27	(14)	3	4			3	5	5	6	3	4	5	5
4.88	(16)	3	5			3	5	6		3	4	5	6
Main Floor Walls	of Two Story	Structure	Supporting	2nd Story	/ Wood Fra	amed Wall	s, Floor ar	nd Roof			7		
		Number a	nd length	of shear w	alls provid	ed							
		1 x 10'-0"	2 x 6'-0"	3 x 4'-0"	4 x 3'-0"	1 x 12'-6"	2 x 7'-0"	3 x 5'-0"	4 x 4'-0"	1 x 17'-0"	2 x 10'-0"	3 x 6'-8"	4 x 5'-0"
2.44	(8)	2	2	3	3	2	3	3	3	2	2	3	3
2.75	(9)	2	2	3	3	2	3	4	4	2	2	3	4
3.05	(10)	2	3	4	4	2	4	4	5	2	3	4	5
3.66	(12)	3	3	4	5	3	4	5	5	2	3	4	5
4.27	(14)	3	4	5	6	3	5	6	6	2	4	5	6
4.88	(16)	3	4	5		3	5	6	6	2	4	5	6
Main Floor Walls	of Two Story	ICF Struct	ure Suppo	rting Woo	d Frame F	loors and I	Roof						
		Number a	nd length	of shear w	alls provid	ed		BE					
		1 x 12'-0"	2 x 6'-8"	3 x 4'-4"	4 x 3'-4"	1 x 16'-0"	2 x 9'-0"	3 x 6'-4"	4 x 4'-6"	1 x 21'-0"	2 x 12'-4"	3 x 8'-6"	4 x 6'-6"
2.44	(8)	2	3	4	4	2	3	4	5	2	2	3	4
2.75	(9)	2	3	4	5	2	4	4	5	2	3	4	4
3.05	(10)	2	4	4	5	2	4	4	75	2	3	4	4
3.66	(12)	3	4	5	6	2	4	5	6	2	3	<u> </u>	5
4.27	(14)	3	5	6		3	5	6		2	4	5	6
4.88	(16)	3	5			3	5	6		2	4	5	6
Vertical	6" ICF Tie Spacing		As per ta	ble A.1.1.			As per ta	able A.1.1.			As per ta	able A.1.1.	
Reinforcement	8" ICF Tie Spacing		As per ta	ble A.1.2.			As per ta	ble A.1.2.			As per ta	ble A.1.2.	
Horizontal	6" ICF Tie Spacing	10 N	Л @	450	(18)	10 N	И @	450	(18)	10 N	И @	450	(18)
Reinforcement	8" ICF Tie Spacing	10 N	Л @	400	(16)	10 N	M @	400	(16)	10 1	M @	400	(16)

- 1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
- 2. This table is to be used in conjunction with the "Design Limitations".
- 3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.
- 4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
- 5. Use Table A.6 for buildings that do not meet the required wall length of this table.
- 6. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
- 7. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
- 8. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"
- All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
- O. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

Table A.4 – Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $0.5 kPa < q_{1/50} \le 0.75 kPa$ (in a Building Without Walkout Basement)

Wall He	eight			Number of	f Concentr	ated Vertic		einforcing E		d of Each	Shear Wal	I	
m	(ft)		S _{a,ICF} ≤	0.085				0.145			S	≤ 0.2	
Second Floor Wa	. ,	ory ICF Str			ood Fram	e Roof	a,ICF		,	<u> </u>	a,ICF		
		Number a											
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-0"	3 x 3'-6"	4 x 2'-8"	1 x 11'-0"	2 x 6'-8"	3 x 4'-8"	4 x 3'-6"
2.44	(8)	2	3	3	3	2	3	3	3	2	2	3	3
2.75	(9)	2	3	3	3	2	3	3	4	2	2	3	3
3.05	(10)	2	3	4	4	2	4	4	5	3	3	4	4
Main Floor Walls	of One Story	ICF Struc	ture Suppo	orting Woo	d Frame F	Roof							
		Number a	ınd length	of shear w	alls provid	led							
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-0"	3 x 3'-6"	4 x 2'-8"	1 x 11'-0"	2 x 6'-8"	3 x 4'-8"	4 x 3'-6"
2.44	(8)	2	2	3	3	2	2	3	3	2	2	2	3
2.75	(9)	2	2	3	3	2	2	3	4	2	2	2	3
3.05	(10)	2	3	3	4	2	3	4	5	2	3	3	4
3.66	(12)	2	4	4		2	4	4	5	3	3	4	5
4.27	(14)	2	4			2	4	5	5	3	4	5	6
4.88	(16)	2	4			3	5	6		3	4	5	6
Main Floor Walls	of Two Story	Structure	Supporting	2nd Story	y Wood Fr	amed Wall	s, Floor ar	nd Roof					
		Number a	nd length	of shear w	alls provid	led					7		
		1 x 10'-0"	2 x 6'-0"	3 x 4'-0"	4 x 3'-0"	1 x 12'-0"	2 x 6'-8"	3 x 5'-0"	4 x 4'-0"	1 x 16'-0"	2 x 9'-0"	3 x 6'-8"	4 x 5'-0"
2.44	(8)	2	3	3	4	2	4	4	4	2	3	3	4
2.75	(9)	2	3	3	4	2	4	4	4	2	3	3	4
3.05	(10)	2	3	4	4	2	4	4	5	2	3	4	5
3.66	(12)	2	3	4	5	3	5	5	6	2	4	4	6
4.27	(14)	2	4	4	5	3	5	5	6	2	4	4	6
4.88	(16)	2	4	4		3	5	6	6	2	4	4	6
Main Floor Walls	of Two Story	ICF Struct	ture Suppo	rting Woo	d Frame F	loors and l	Roof						
		Number a	nd length	of shear w	alls provid	led		БЕ				БA	ЛС
		1 x 12'-0"	2 x 6'-0"	3 x 4'-4"	4 x 3'-4"	1 x 15'-0"	2 x 9'-0"	3 x 6'-0"	4 x 4'-0"	1 x 20'-0"	2 x 11'-0"	3 x 8'-0"	4 x 6'-4"
2.44	(8)	2	4 _	4	4	3	3	4	5	2	3	4	4
2.75	(9)	2	4	4	5	- 3	3	4	6	2	3	4	4
3.05	(10)	2	4	5	5	3	4	5	6	2	3	4	5
3.66	(12)	3	5	6	6	3	5	6		2	4\/	\(\) 5	6
4.27	(14)	3	5	6	6	3	5	6		2	5	6	6
4.88	(16)	3	5	6		3	5	6		2	5	6	6
Vertical	6" ICF Tie Spacing		As per ta	able A.1.1.			As per ta	able A.1.1.			As per ta	able A.1.1.	
Reinforcement	8" ICF Tie Spacing		As per ta	ble A.1.2.			As per ta	ble A.1.2.			As per ta	ble A.1.2.	
Horizontal	6" ICF Tie Spacing	10 N	M @	450	(18)	10 N	Л @	450	(18)	10 1	Л @	450	(18)
Reinforcement	8" ICF Tie Spacing	10 N	M @	400	(16)	10 N	Л @	400	(16)	10 N	Л @	400	(16)

- 1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
- This table is to be used in conjunction with the "Design Limitations".
- 3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.
- 4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
- 5. Use Table A.6 for buildings that do not meet the required wall length of this table.
- 5. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
- Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
- 8. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"
- a. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
- 10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

Table A.5 – Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $0.75 \text{kPa} < q_{1/50} \le 1.05 \text{kPa}$ (in a Building Without Walkout Basement)

Wall He	ight			Number of	f Concentr	ated Vertic		einforcing E Classifica		d of Each	Shear Wal		
m	(ft)		S, ICE S	0.085				0.145			S	≤ 0.2	
Second Floor Wa	lls of Two Sto	ry ICF Str			ood Fram	e Roof	4,101				4,101		
		Number a	nd length	of shear w	alls provid	led							
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-4"	3 x 3'-6"	4 x 2'-8"	1 x 12'-0"	2 x 7'-0"	3 x 5'-0"	4 x 3'-8"
2.44	(8)	2	3	4	4	2	3	3	4	2	3	3	4
2.75	(9)	2	3	4	4	2	3	4	4	3	3	4	5
3.05	(10)	2	4	4	5	2	3	4	5	3	3	4	5
Main Floor Walls	of One Story	ICF Struc	ture Suppo	orting Woo	d Frame F	Roof							
		Number a	nd length	of shear w	alls provid	led							
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-4"	3 x 3'-6"	4 x 2'-8"	1 x 12'-0"	2 x 7'-0"	3 x 5'-0"	4 x 3'-8"
2.44	(8)	2	2	3	3	2	2	3	3	2	2	3	3
2.75	(9)	2	3	3	3	2	3	3	4	2	3	3	4
3.05	(10)	2	3	3	4	2	3	4	4	2	3	4	4
3.66	(12)	2	3	4		2	3	4	5	2	3	4	5
4.27	(14)	2	3			2	4	5	5	2	4	4	6
4.88	(16)	2	4			2	4	5		2	4	5	
Main Floor Walls	of Two Story	Structure	Supporting	2nd Story	y Wood Fr	amed Wall	s, Floor ar	nd Roof					
		Number a	nd length	of shear w	alls provid	ed					7		
		1 x 10'-0"	2 x 6'-0"	3 x 4'-0"	4 x 3'-0"	1 x 12'-6"	2 x 7'-0"	3 x 5'-0"	4 x 4'-0"	1 x 17'-0"	2 x 10'-0"	3 x 6'-8"	4 x 5'-0"
2.44	(8)	2	3	4	4	2	4	4	5	2	3	4	4
2.75	(9)	2	3	4	4	2	4	5	5	2	3	4	5
3.05	(10)	2	3	4	5	2	4	5	5	2	3	4	5
3.66	(12)	2	3	4	5	2	4	5	6	2	3	4	5
4.27	(14)	2	4	5		2	4	5	6	2	3	5	6
4.88	(16)	2	4	5		2	4	6		2	3	5	6
Main Floor Walls	of Two Story	ICF Struct	ure Suppo	rting Woo	d Frame F	loors and I	Roof						
		Number a	nd length	of shear w	alls provid			BE					
		1 x 12'-0"	2 x 6'-8"	3 x 4'-4"	4 x 3'-4"	1 x 16'-0"	2 x 9'-0"	3 x 6'-4"	4 x 4'-6"	1 x 21'-0"	2 x 12'-4"	3 x 8'-6"	4 x 6'-6"
2.44	(8)	2	4	5	5	2	4	5	6	2	4	4	4
2.75	(9)	2	4	5	5	2	5	5	6	2	4	5	5
3.05	(10)	2	4	5	6	2	5	5	96	2	4	5	5
3.66	(12)	2	5	6		2	5	6		2	4	<u> </u>	5
4.27	(14)	2	5	6		2	5	6		2	4	5	6
4.88	(16)	2	6			2	5	6		2	4	5	6
Vertical	6" ICF Tie Spacing		As per ta	ble A.1.1.			As per ta	able A.1.1.			As per ta	able A.1.1.	
Reinforcement	8" ICF Tie Spacing		As per ta	ble A.1.2.			As per ta	ble A.1.2.			As per ta	ble A.1.2.	
Horizontal	6" ICF Tie Spacing	10 N	И @	450	(18)	10 N	И @	450	(18)	10 N	И @	450	(18)
Reinforcement	8" ICF Tie Spacing	10 N	И @	400	(16)	10 N	Л @	400	(16)	10 N	M @	400	(16)

- 1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
- 2. This table is to be used in conjunction with the "Design Limitations".
- 3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.
- 4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
- 5. Use Table A.6 for buildings that do not meet the required wall length of this table.
- 6. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
- 7. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
- 8. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"
- 9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
- 10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

Table A.6 – Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} > 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa (in a Building Without Walkout Basement)

Wall I	Height			Nu	ımber o	f Conce	ntrated '			inforcin Classif		at End o	f Each	Shear W	Vall		
m	(ft)		Salce	≤ 0.2			S. 105	≤ 0.4		0.000	Salce	≤ 0.7			Salce	≤ 1.05	
Second Floor	Walls of Two Sto	ry ICF			orting W	ood Fra					a,ICF_				a,ICF		
		Numbe	r and le	ngth of	shear w	alls pro	vided										
		1 x 10'-0"	2 x 5'-0"	3 x 4'-0"	4 x 3'-0"	1 x 13'-0"	2 x 7'-6"	3 x 5'-6"	4 x 4'-0"	1 x 16'-0"	2 x 9'-0"	3 x 7'-0"	4 x 5'-0"	1 x 18'-0"	2 x 12'-0"	3 x 9'-0"	4 x 7'-0"
2.44	(8)	2	2	3	3	2	2	3	3	2	3	3	4	2	2	3	4
2.75	(9)	2	3	3	4	2	3	4	4	2	3	3	5	2	2	4	4
3.05	(10)	2	4	3	4	3	4	4		2	4	4		3	3	4	6
Main Floor Wa	lls of One Story	ICF Str	ucture S	Supporti	ing Woo	d Fram	e Roof										
		Numbe	r and le	ngth of	shear w	alls pro	vided										
		1 x 10'-0"	2 x 5'-0"	3 x 4'-0"	4 x 3'-0"	1 x 14'-0"	2 x 8'-0"	3 x 6'-0"	4 x 4'-0"	1 x 17'-0"	2 x 11'-0"	3 x 7'-0"	4 x 5'-0"	1 x 20'-0"	2 x 12'-0"	3 x 9'-0"	4 x 7'-0"
2.44	(8)	2	2	3	3	2	2	3	3	2	2	2	3	2	2	3	4
2.75	(9)	2	3	3	4	2	3	3		2	2	3	4	2	2	4	4
3.05	(10)	2	4	3	4	2	4	4		2	3	4	5	3	3	4	6
3.66	(12)	2	4	4	5	2	4	4		2	4	5		3	3	6	6
4.27	(14)	2	6	5		2	5			4	5			5			
4.88	(16)	2	6			2	5			4	6			6			
Main Floor Wa	Ils of Two Story	Structu	e Supp	orting 2	nd Stor	y Wood	Framed	Walls,	Floor ar	nd Roof							
		Numbe													A		
		1 x 14'-0"	2 x 8'-0"	3 x 6'-0"	4 x 4'-0"	1 x 16'-0"	2 x 11'-0"	3 x 8'-0"	4 x 6'-0"	1 x 24'-0"	2 x 14'-0"	3 x 10'-0"	4 x 8'-0"	1 x 28'-0"	2 x 16'-0"	3 x 12'-0"	4 x 9'-0"
2.44	(8)	2	2	2	4	2	2	4	4	2	2	3	4	2	2	4	5
2.75	(9)	2	2	3	4	3	3	5	5	2	2	4	5	2	3	4	6
3.05	(10)	2	3	3		3	3	5	5	2	3	4	5	2	4	5	
3.66	(12)	2	3	4		4	4	5		2	4	6		2	6		
4.27	(14)	2	4			6	5			2				4			
4.88	(16)	2	4			6	5			2				4			
	Ils of Two Story	_		Lunnorti	na Woo		_	and Ro	of	_	<u> </u>			<u> </u>	<u> </u>	<u> </u>	
IVIAIITT 1001 VVA		Numbe						and no									
		1 x 16'-0"	2 x 10'-0"	3x7'-0"	4 x 6'-0"	1 x 22'-0"	2 x 14'-0"	3 x 11'-0"	4 x 8'-0"	1 x 28'-0"	2 x 16'-0"	3 x 12'-0"	4 x 9'-4"	1 x 34'-0"	2 x 20'-0"	3 x 15'-0"	4 x 12'-0"
2.44	(8)	2	3	3	3	2	3	3	4	2	2	4	5	2	2	4	5
2.75	(9)	2	3	4	3	2	3	3	5	2	3	4	6	2	3	5	6
3.05	(10)	2	3	4	4	2	4	4	6	2	4	5		2	4	6	\perp
3.66	(12)	2	3	5	5	2	4	4	6	2	6			2	6		
4.27	(14)	2	4	6		3	5	5		5				_ 5	ИA		K(J
4.88	(16)	2	4			3	5	5		5	<u></u>			5			
Vertical	6" ICF Tie Spacing	As per table A.2.1. As per table A.2.1.								Д	s per ta	ble A.2.	1.	Д	s per ta	ble A.2.	1.
Reinforcement	8" ICF Tie Spacing	As per table A.2.2. As per table A.2.2. As per table A.2.2. As per table A.2.2.									2.						
Horizontal	Block Height of 12" and 18"	А	s per ta	ble A.2.	1.	А	s per ta	ble A.2.	1.	Д	s per ta	ble A.2.	1.	Д	s per ta	ble A.2.	1.
Reinforcement	Block Height of 16"	А	s per ta	ble A.2.	2.	А	s per ta	ble A.2.	2.	А	s per ta	ble A.2.	2.	А	s per ta	ble A.2.	2.

- 1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
- 2. This table is to be used in conjunction with the "Design Limitations".
- 3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.
- 4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
- 5. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
- Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
- All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"
- 8. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
- 9. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.
- 10. Horizontal reinforcement in shear walls where $S_{a,ICF} > 0.2$ must be anchored using a standard 180° hook around vertical end bars.
- 1. When using this table for $S_{a,ICF} \le 0.2$, use the vertical and horizontal distributed steel in Tables A.2.1. or A.2.2. for $S_{a,ICF} \le 0.4$.

Table A.7. Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 0.5$ kPa (in a Building With Walkout Basement)

Wall I	Height			Number of	f Concentr	ated Vertic		einforcing E Classifica		d of Each	Shear Wal	l						
m	(ft)		S _{a ICE} ≤	. 0 085		Sei		€ 0.145	llion		S	≤ 0.2						
	Valls of Two Sto	rv ICF Str			ood Frame	e Roof	O _{a,ICF} _	0.140			a,ICF	3 0.2						
				- p		lumber an	d length o	f shear wa	lls provide	d								
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"		1 x 11'-0"		1		1	2 x 8'-0"	3 x 5'-6"	4 x 4'-4"					
2.44	(8)	2	3	3	3	2	2	3	3	2	2	3	3					
2.75	(9)	2	3	3	4	2	3	3	4	2	3	3	3					
3.05	(10)	2	4	4	5	2	3	4	4	2	3	4	4					
Main Floor Wal	lls of One Story	ICF Struc	ture Suppo	orting Woo														
						lumber an					1	1	1					
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 11'-0"	2 x 6'-0"	3 x 4'-0"	4 x 3'-6"	1 x 14'-0"	2 x 8'-0"	3 x 5'-6"	4 x 4'-4"					
2.44	(8)	2	2	3	3	2	2	3	3	2	2	2	2					
2.75	(9)	2	3	3	3	2	3	3	3	2	2	3	3					
3.05	(10)	2	3	4	4	2	3	4	4	2	2	3	3					
3.66	(12)	3	4	5		3	4	5	5	2	4	4	4					
4.27	(14)	4	6			4	5	6		3	5	6	6					
4.88	(16)	4	6			4	6			4	5							
Main Floor Wal	ls of Two Story	Structure	Supporting	2nd Story	y Wood Fra	amed Wall	s, Floor ar	nd Roof					Į.					
						lumber an			lls provide	d								
		1 x 10'-0"	2 x 7'-0"	3 x 4'-6"	4 x 3'-4"	1 x 14'-0"	2 x 8'-0"	3 x 6'-4"	4 x 4'-4"	1 x 20'-0"	2 x 11'-0"	3 x 7'-8"	4 x 6'-0"					
2.44	(8)	2	2	3	3	2	3	3	4	2	2	3	3					
2.75	(9)	3	2	4	4	2	3	3	4	2	3	3	4					
3.05	(10)	3	3	4	5	3	4	4	5	2	3	4	5					
3.66	(12)	4	3	5	5	4	5	5	6	2	4	5	5					
4.27	(14)	5	4	6		4	6	6		2	5	6	6					
4.88	(16)	5	4			4	6	6		2	5	6						
Main Floor Wal	Is of Two Story	ICF Struct	ure Suppo	rting Woo	d Frame F	loors and I	Roof			ı		ı	ı					
						lumber an		f shear wa	lls provide	d								
		1 x 12'-0"	2 x 7'-0"	3 x 4'-8"	4 x 3'-8"	1 x 18'-0"	2 x 10'-0"	3 x 7'-8"	4 x 5'-4"	1 x 24'-0"	2 x 13'-0"	3 x 9'-6"	4 x 7'-8"					
2.44	(8)	3	3	4	4	2	3	4	4	2	3	3	3					
2.75	(9)	3	4	5	5	2	5	4	5	2	3	4	4					
3.05	(10)	3 /	4	5	5	2	5 /	4	5	2	/3	4	4					
3.66	(12)	4	5	6	6	2	5	5	6	2	4	5	5					
4.27	(14)	5	6			3	6	6		2	5	6	6					
4.88	(16)	5	6			3	6	6		2	-5	A6 (KG					
Vertical	6" ICF Tie Spacing		As per ta	ble A.1.1.			As per ta	able A.1.1.			As per ta	able A.1.1.						
Reinforcement	8" ICFTie Spacing		As per ta	ble A.1.2.			As per ta	ble A.1.2.			As per ta	2 3 4 4 5 5 6 5 6 5 6 5 6 5 6 5 6 6 5 6 6 5 6 6 6 5 6						
Horizontal	Block Height of 12" and 18"	10 N	И @	450	(18)	10 N	Л @	450	(18)	10 M	И @	450	(18)					
Reinforcement	Block Height of 16"	10 N	И @	400	(16)	10 N	Л @	400	(16)	10 N	И @	400	(16)					

- S_{a ICF} is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
- 2. This table is to be used in conjunction with the "Design Limitations".
- 3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.
- 4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
- 5. Use Table A.10 for buildings that do not meet the required wall length of this table.
- 6. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
- Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
- 8. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"
- 9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
- 10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

Table A.8 – Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, S $_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $0.5 kPa < q_{1/50} \le 0.75 kPa$ (in a Building With Walkout Basement)

Wall H				Number of	f Concentr	ated Vertic				d of Each	Shear Wal	I	
m	(ft)		S _{alce} ≤	0.085		Seis		Classifica ≤ 0.145	tion			≤ 0.2	
Second Floor V	\ /	rv ICF Str			ood Frame	e Roof	O _{a,ICF} 3	5 0.140			a,ICF	3 0.2	
		Number a											
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-6"	2 x 5'-8"	3 x 4'-0"	4 x 3'-4"	1 x 13'-6"	2 x 7'-6"	3 x 5'-0"	4 x 4'-0"
2.44	(8)	2	3	3	4	2	3	3	4	2	2	3	3
2.75	(9)	2	3	4	4	2	3	3	4	2	2	3	4
3.05	(10)	2	4	4	5	2	4	4	5	2	3	4	5
Main Floor Wal	ls of One Story	ICF Struc	ture Suppo	orting Woo	d Frame F	Roof							
		Number a	nd length	of shear w	alls provid	led							
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-6"	2 x 5'-8"	3 x 4'-0"	4 x 3'-0"	1 x 13'-6"	2 x 7'-6"	3 x 5'-0"	4 x 4'-0"
2.44	(8)	2	3	3	3	2	2	3	3	2	2	3	3
2.75	(9)	2	3	3	4	2	3	3	4	2	2	3	3
3.05	(10)	2	4	4	4	2	3	4	5	2	3	4	4
3.66	(12)	3	5	5		3	5	5	5	2	4	5	5
4.27	(14)	3	5			4	5	6		3	5	6	6
4.88	(16)	3	6			4	6			4	5		
Main Floor Wal	Is of Two Story	Structure	Supporting	2nd Story	y Wood Fra	amed Wall	s, Floor ar	nd Roof					
		Number a	nd length	of shear w	alls provid	ed					7 .		
		1 x 10'-0"	2 x 7'-0"	3 x 4'-6"	4 x 3'-4"	1 x 14'-0"	2 x 7'-8"	3 x 5'-8"	4 x 4'-4"	1 x 17'-6"	2 x 10'-6"	3 x 7'-4"	4 x 5'-8"
2.44	(8)	2	2	3	4	2	4	4	4	2	3	3	4
2.75	(9)	2	2	4	4	2	4	4	4	2	3	3	4
3.05	(10)	3	3	4	5	2	4	5	5	2	3	4	5
3.66	(12)	4	3	5	6	3	5	6	6	2	4	5	6
4.27	(14)	4	4	6		3	6	6		3	4	5	6
4.88	(16)	4	4			3	6			3	4	6	
Main Floor Wal	ls of Two Story	ICF Struct	ure Suppo	rting Wood	d Frame F	loors and I	Roof		,	,			
		Number a	nd length	of shear w	alls provid	ed							
		1 x 12'-0"	2 x 7'-0"	3 x 4'-8"	4 x 3'-8"	1 x 17'-0"	2 x 9'-6"	3 x 7'-0"	4 x 5'-4"	1 x 22'-0"	2 x 12'-6"	3 x 9'-0"	4 x 7'-4"
2.44	(8)	_ 3	3	4	4	2	4	4	5	2	3	4	4
2.75	(9)	3	4	4	5	2	4	4	5	2	3	4	4
3.05	(10)	3/	4	5	5	2	4	5	6	2	3	4	5
3.66	(12)	4	5	6	6	3	5	70,		2	4	5	6
4.27	(14)	4	5			3	6			2	5	<u> </u>	6
4.88	(16)	4	5			3	6			2	5	6	6
Vertical	6" ICF Tie Spacing		As per ta	ble A.1.1.			As per ta	able A.1.1.			As per ta	able A.1.1.	
Reinforcement	8" ICF Tie Spacing		As per ta	ble A.1.2.			As per ta	ble A.1.2.			As per ta	able A.1.2.	
Horizontal	Block Height of 12" and 18"	10 N	И @	450	(18)	10 N	Л @	450	(18)	10 N	VI @	450	(18)
Reinforcement	Block Height of 16"	10 N	И @	400	(16)	10 N	Л @	400	(16)	10 N	VI @	400	(16)

- 1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
- 2. This table is to be used in conjunction with the "Design Limitations".
- 3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.
- 4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
- 5. Use Table A.10 for buildings that do not meet the required wall length of this table.
- 6. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
- 7. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations," are adequate.
- 8. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"
- All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
- 10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

Table A.9 – Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, S $_{a,ICF} \le 0.2$ and Hourly Wind Pressure, 0.75kPa $< q_{1/50} \le 1.05$ kPa (in a Building With Walkout Basement)

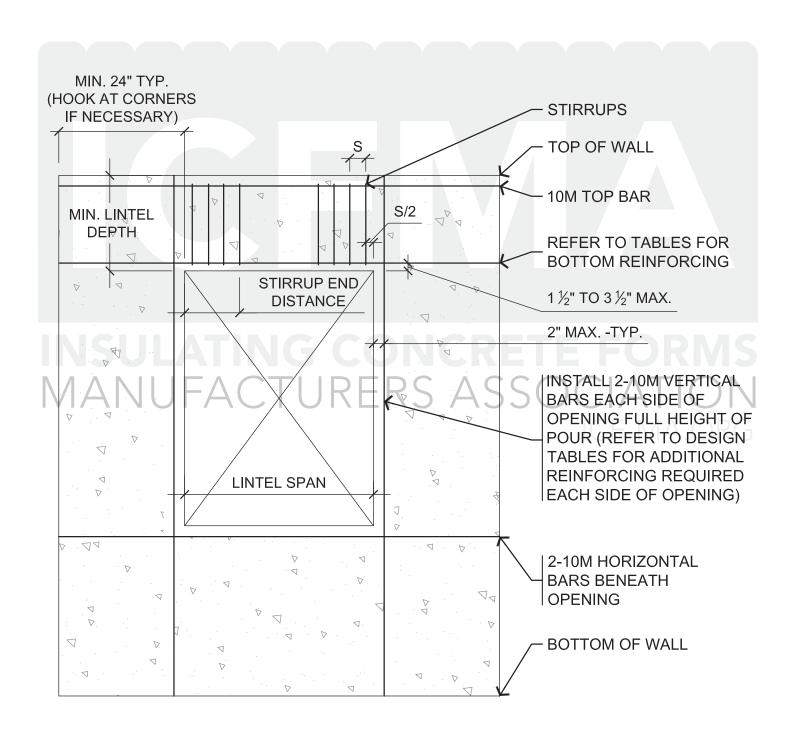
Wall	Height			Number of	Concentr			einforcing E Classifica		d of Each	Shear Wal	I	
m	(ft)		S _{a.ICF} ≤	0.085		00.		≤ 0.145			S	≤ 0.2	
Second Floor	Walls of Two Sto		ucture Sup	porting W			a,IOI				a,iOi		
		Number a	nd length				r	1	1		r	T	1
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-6"	3 x 4'-0"	4 x 3'-4"	1 x 12'-0"	2 x 7'-0"	3 x 4'-6"	4 x 3'-8"
2.44	(8)	2	3	4	4	2	3	3	4	2	3	4	4
2.75	(9)	2	4	4	4	2	4	4	4	2	3	4	5
3.05	(10)	2	4	4	5	2	4	4	5	2	3	4	5
Main Floor Wa	lls of One Story												
			nd length										
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-6"	3 x 4'-0"	4 x 3'-0"	1 x 12'-0"	2 x 7'-0"	3 x 4'-6"	4 x 3'-6"
2.44	(8)	2	3	3	3	2	3	3	3	2	2	3	3
2.75	(9)	2	3	4	4	2	3	3	4	2	3	4	4
3.05	(10)	2	3	4	4	2	3	4	4	2	3	4	4
3.66	(12)	2	4	5		2	4	4	5	2	4	5	5
4.27	(14)	2	5			2	5	5	6	2	4	6	
4.88	(16)	2	5			2	6	6		2	5		
Main Floor Wa	lls of Two Story	Structure	Supporting	2nd Story	/ Wood Fra	amed Wall	s, Floor ar	nd Roof					
		Number a	nd length	of shear w	alls provid	ed							,
		1 x 10'-0"	2 x 7'-0"	3 x 4'-6"	4 x 3'-4"	1 x 13'-0"	2 x 7'-4"	3 x 5'-4"	4 x 4'-0"	1 x 15'-0"	2 x 9'-6"	3 x 6'-8"	4 x 5'-4"
2.44	(8)	2	2	3	4	2	4	4	5	2	3	4	4
2.75	(9)	2	2	4	4	2	4	5	5	2	3	4	5
3.05	(10)	2	2	4	4	2	4	5	5	2	3	4	5
3.66	(12)	2	2	4	5	2	4	5	6	2	4	5	5
4.27	(14)	2	2	4		2	5	6		2	4	6	6
4.88	(16)	2	2	5		2	5	6		2	4	6	
Main Floor Wa	lls of Two Story	ICF Struct	ure Suppo	rting Woo	d Frame F	loors and I	Roof						
		Number a	nd length	of shear w	alls provid	ed							
		1 x 12'-0"	2 x 7'-0"	3 x 4'-6"	4 x 3'-6"	1 x 16'-0"	2 x 9'-0"	3 x 6'-6"	4 x 4'-6"	1 x 20'-0"	2 x 12'-0"	3 x 8'-4"	4 x 6'-8"
2.44	(8)	2	4	4	5	2	4	5	5	2	3	4	4
2.75	(9)	2	4	5	5	2	4	5	6	2	3	5	5
3.05	(10)	2	4	5	6	2	4	5		2	3	5	5
3.66	(12)	2	5	6		2	5/	6		2	3	5	6
4.27	(14)	2	5			2	5	6		2	3	A 6	DC
4.88	(16)	2	6			2	5			2	3	6	NU
Vertical	6" ICF Tie Spacing		As per ta	ble A.1.1.			As per ta	able A.1.1.			As per ta	able A.1.1.	
Reinforcement	8" ICFTie Spacing		As per ta	ble A.1.2.			As per ta	ble A.1.2.			As per ta	able A.1.2.	
Horizontal	Block Height of 12" and 18"	10 N	И @	450	(18)	10 N	Л @	450	(18)	10 N	Л @	450	(18)
Reinforcement	Block Height of 16"	10 N	И @	400	(16)	10 N	Л @	400	(16)	10 N	Л @	400	(16)

- 1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
- 2. This table is to be used in conjunction with the "Design Limitations".
- 3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.
- 4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
- 5. Use Table A.10 for buildings that do not meet the required wall length of this table.
- 6. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
- 7. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
- 8. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"
- All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
- 10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

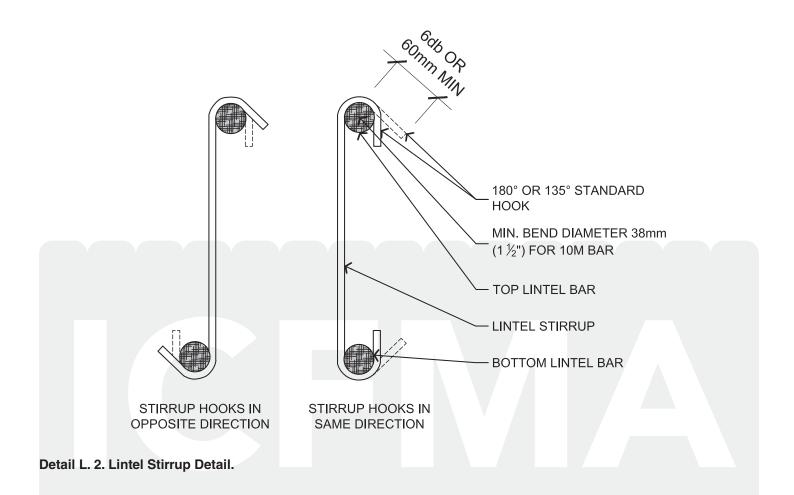
Table A.10 – Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} > 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa (in a Building With Walkout Basement)

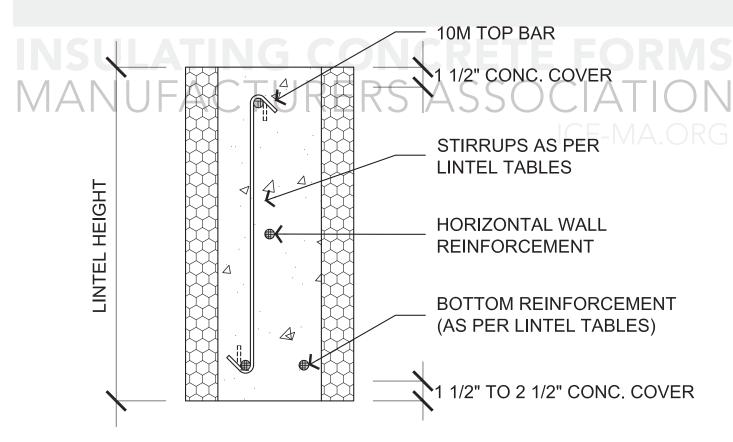
Wall	Height							Seism	ic Zone	Classif	ication						
m	(ft)		Salce	≤ 0.2			S		20110	Olabbii	Salce	≤ 0.7			S	≤ 1.05	
Second Floor	Walls of Two Sto	ry ICF			orting W	ood Fra					a,ICF_				a,ICF		
		Numbe	r and le	ngth of	shear w	alls pro	vided										
		1 x 10'-0"	2 x 5'-0"	3 x 4'-0"	4 x 3'-0"	1 x 13'-0"	2 x 7'-6"	3 x 5'-6"	4 x 4'-0"	1 x 16'-0"	2 x 9'-0"	3 x 7'-0"	4 x 5'-0"	1 x 18'-0"	2 x 12'-0"	3 x 9'-0"	4 x 7'-0"
2.44	(8)	2	3	3	3	2	3	4	4	2	3	3	5	2	2	3	4
2.75	(9)	2	4	4	4	3	4	5	5	2	4	5		3	4	4	6
3.05	(10)	2	5	4	5	4	5	6		3	6	6		5	5	6	
Main Floor Wa	Ills of One Story																
		Numbe	r and le	ngth of	shear w	alls pro	vided										
		1 x 11'-0"	2 x 6'-0"	3 x 4'-0"	4 x 3'-0"	1 x 16'-0"	2 x 9'-0"	3 x 6'-0"	4 x 4'-0"	1 x 20'-0"	2 x 12'-0"	3 x 8'-0"	4 x 6'-0"	1 x 24'-0"	2 x 13'-0"	3 x 9'-0"	4 x 7'-0"
2.44	(8)	2	2	3	3	2	2	3	4	2	2	2	3	2	2	3	4
2.75	(9)	2	3	3	4	2	3	3		2	2	3	4	2	2	4	4
3.05	(10)	2	4	4	4	2	4	4		2	3	4	5	3	3	5	6
3.66	(12)	2	4	6	6	2	4	6		2	4	6		3	6		
4.27	(14)	3	6			3				4	6			5			
4.88	(16)	4				4				6							
Main Floor Wa	Ills of Two Story	Structu	re Supp	orting 2	nd Story	y Wood	Framed	Walls,	Floor ar	nd Roof							
		Numbe													A		
		1 x 14'-0"	2 x 8'-6"	3 x 6'-0"	4 x 4'-0"	1 x 20'-0"	2 x 14'-0"	3 x 9'-0"	4 x 7'-0"	1 x 26'-0"	2 x 15'-0"	3 x 11'-0"	4 x 9'-0"	1 x 30'-0"	2 x 17'-0"	3 x 13'-0"	4 x 10'-0"
2.44	(8)	2	2	3	5	2	2	4	4	2	2	3	4	2	5	6	6
2.75	(9)	2	3	4	5	2	2	5	5	2	3	4	5	2	6	6	
3.05	(10)	2	3	4		3	2	5	5	2	4	5	6	2	6		
3.66	(12)	2	4	6		4	2	6		2	6			4			
4.27	(14)	4	6			6	4			2				5			
4.88	(16)	4	6			6	4			5							
Main Floor Wa	Ills of Two Story	ICF Str	ucture S	Supporti	ng Woo	d Frame	Floors	and Ro	of								
		Numbe	r and le	ngth of	shear w	alls pro	vided										
INIG		1 x 16'-0"	2 x 10'-4"	3 x 7'-6"	4 x 6'-0"	1 x 23'-0"	2 x 15'-0"	3 x 11'-0"	4 x 9'-0"	1 x 32'-0"	2 x 17'-0"	3 x 13'-0"	4 x 10'-0"	1 x 38'-0"	2 x 22'-0"	3 x 17'-0"	4 x 13'-0"
2.44	(8)	2	3	3	4	2	3	4	4	2	3	4	5	2	4	4	5
2.75	(9)	2	3	4	4	2	3	1	5 /	2	4	5	6	2	5	5	6
3.05	(10)	3	4	5	5	3	4	5	6	2	5	6		2	5	6	IJ
3.66	(12)	4	5	6	6	4	5	6		2				2	/ A		
4.27	(14)	5	6			6				5				5	/IΑ		KG
4.88	(16)	5	6			6				6				6			
Vertical	6" ICF Tie Spacing	А	s per ta	ble A.2.	1.	Д	s per ta	ble A.2.	1.	Д	s per ta	ble A.2.	1.	Д	s per ta	ble A.2.	1.
Reinforcement	8" ICF Tie Spacing	А	s per ta	ble A.2.	2.	А	s per ta	ble A.2.	2.	А	s per ta	ble A.2.	2.	А	s per ta	ble A.2.	2.
Horizontal	Block Height of 12" and 18"	А	s per ta	ble A.2.	1.	Δ	s per ta	ble A.2.	1.	Д	s per ta	ble A.2.	1.	Д	s per ta	ıble A.2.	1.
Reinforcement	Block Height of 16"	А	s per ta	ble A.2.	2.	А	s per ta	ble A.2.	2.	А	s per ta	ble A.2.	2.	A	s per ta	ble A.2.	2.

- 1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
- 2. This table is to be used in conjunction with the "Design Limitations".
- 3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.
- 4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
- 5. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
- 6. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations," are adequate.
- All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"
- 8. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
- 9. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.
- 10. Horizontal reinforcement in shear walls where S alc > 0.2 must be anchored using a standard 180° hook around vertical end bars.
- When using this table for S_{a,ICF} ≤ 0.2, use the vertical and horizontal distributed steel in Tables A.2.1. or A.2.2. for S_{a,ICF} ≤ 0.4.

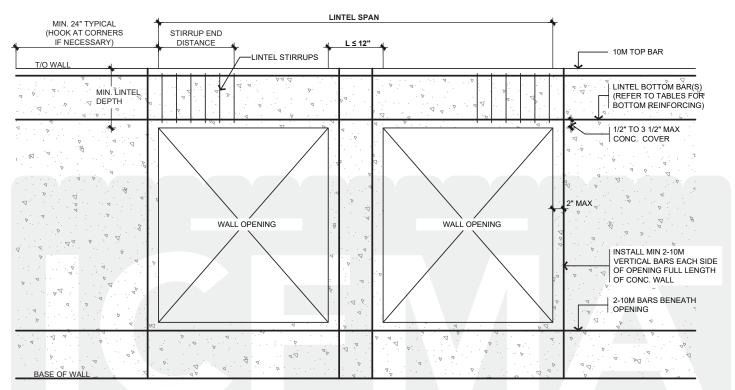

Table A.11 – Above Grade Walkout Basement Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.4$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa

Wall	Height					Sei	smic Zone	Classifica	tion				
m	(ft)	S	5 _{a ICE} ≤ 0.08	5	S	$S_{a,ICE} \leq 0.14$			$S_{a,ICF} \leq 0.2$			$S_{a,ICF} \leq 0.4$	
Walkout Base	ement Wall of a S		4,101			4,101		ı	a,ICF —			a,ICF	
			nd length										
			2 x 6'-0"				3 x 6'-0"	1 x 14'-0"	2 x 9'-0"	3 x 7'-0"	1 x 19'-0"	2 x 13'-0"	3 x 10'-0'
2.44	(8)	2	3	5	2	3	3	2	3	4	2	2	4
2.75	(9)	2	3	6	2	3	4	2	4	4	2	3	5
3.05	(10)	2	3	6	2	3	4	2	5	5	4	4	5
3.66	(12)	2	4		3	4	5	3	6	6	6	6	
Walkout Base	ement Walls of a	Two Story	Wood Frar	ned Struct	ture Suppo	rting Woo	d Frame F	loors and	Roof				
		Number a	nd length	of shear w	alls provid	ed							
		1 x 10'-0"	2 x 6'-6"	3 x 5'-0"	1 x 12'-0"	2 x 8'-0"	3 x 6'-0"	1 x 14'-0"	2 x 9'-0"	3 x 7'-0"	1 x 19'-0"	2 x 13'-0"	3 x 10'-0'
2.44	(8)	2	4	4	2	3	4	2	3	4	2	3	4
2.75	(9)	3	4	5	2	4	4	2	4	4	3	4	5
3.05	(10)	4	5	5	2	4	4	2	4	5	4	5	6
3.66	(12)	5	6	6	3	4	5	3	5	6	5	6	6
Walkout Base	ement Wall of a To	wo Story E	Building wit	h Main Flo	or ICF Wa	alls Suppoi	rting 2nd S	Story Wood	Framed V	Valls, Floo	r and Roo	f	
		Number a	nd length	of shear w	alls provid	ed			1				
		1 x 12'-0"	2 x 7'-0"	3 x 5'-6"	1 x 14'-0"	2 x 9'-0"	3 x 7'-0"	1 x 16'-0"	2 x 11'-0"	3 x 8'-6"	1 x 22'-0"	2 x 15'-0"	3 x 12'-0'
2.44	(8)	2	3	3	2	4	4	2	3	4	2	4	4
2.75	(9)	2	3	4	2	4	5	2	3	4	4	4	5
3.05	(10)	2	4	4	2	4	5	2	3	4	4	5	5
3.66	(12)	2	4	5	3	5	6	4	4	6	6	6	6
Walkout Base	ement Wall of Two	Story ICF	Structure	Supportir	ng Wood F	rame Floo	rs and Roc	of					
		Number a	nd length	of shear w	alls provid	ed							
		1 x 12'-0"	2 x 8'-0"	3 x 6'-0"	1 x 16'-0"	2 x 10'-6"	3 x 8'-0"	1 x 20'-0"	2 x 13'-0"	3 x 9'-6"	1 x 26'-0"	2 x 18'-0"	3 x 14'-0'
2.44	(8)	2	3	4	2	4	5	2	2	4	2	3	4
2.75	(9)	2	4	5	2	4	5	2	3	5	2	3	5
3.05	(10)	2	4	5	2	4	5	2	3	5	3	4	6
3.66	(12)	3	5	6	3	5	6	2	4		6	6	6
Vertical	6", 8", 10" Thick Wall	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement	12" Thick Wall	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
Horizontal	Block Height of 12" and 18"	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)
Reinforcement	Block Height of 16"	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)

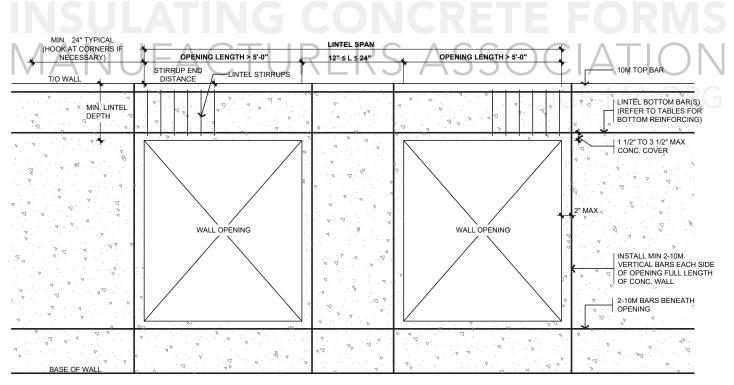

- 1. S_{a ICF} is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
- 2. This table is to be used in conjunction with the "Design Limitations".
- 3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.
- 4. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
- 5. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
- All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"
 All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
- 8. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.
- 9. Horizontal reinforcement in shear walls where S_{a,ICF} > 0.2 must be anchored using a standard 180° hook around vertical end bars.
- 10. Walkout basement shear walls are to be reviewed and designed by a structural engineer where $S_{a,ICF} > 0.4$.



Lintel Details and Tables



Detail L. 1. Reinforcing Around Openings.



Detail L. 3. Lintel Section

Detail L. 4. Lintel Span with Less Than 305mm (12") of Wall Between Openings.

Detail L. 5. Lintel Span with Less Than 610mm (24") of Wall Between Openings, and Openings Are Greater Than 1.53m (5'-0") in Length.

Table L1 6" Lintel Reinforcement with Uniformly Distributed Load

						Lintel -	6"Thic	k x 8" [Deep (1	50mm T	hick x	200mm	Deep),	s = 3"	(75mm)				
Lintal	Cnon								Unifo	rmly Dis	tributed	Load							
Lintel	Span	7.5k	N/m	11kl	N/m	14.5	κN/m	18k	N/m	21.5k	κN/m	25.5	κN/m	29k	N/m	33k	N/m	36.5	kN/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	1750	Olb/ft	200	Olb/ft	2250	Olb/ft	250	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	150 (6)	1-15M	150 (6)	1-15M	225 (9)	1-15M	225 (9)	1-15M	300 (12)	1-15M	300 (12)
1200	(4)	1-10M	0	1-15M	0	1-15M	150 (6)	1-15M	225 (9)	1-20M	300 (12)	1-20M	375 (15)						
1500	(5)	1-15M	0	1-15M	150 (6)	1-20M	300 (12)												
1800	(6)	1-15M	0	1-20M	300 (12)														
2400	(8)																		
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 1-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					L	intel - 6	"Thick	x 12" [Deep (1	50mm 1	hick x	300mm	Deep),	s = 6"	(150mn	1)			
Lintol	Span								Unifo	mly Dis	tributed	Load							
Linter	Span	7.5k	N/m	11k	N/m	14.5	kN/m	18k	N/m	21.5k	N/m	25.5	kN/m	29k	N/m	33k	N/m	36.5	kN/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	1750	Olb/ft	2000	Olb/ft	2250	Olb/ft	2500	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	300 (12)	1-10M	300 (12)	1-15M	300 (12)	1-15M	300 (12)
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	300 (12)	1-15M	300 (12)	1-15M	300 (12)	1-15M	450 (18)	1-15M	450 (18)
1500	(5)	1-10M	0	1-15M	0	1-15M	300 (12)	1-15M	300 (12)	1-15M	450 (18)	1-15M	450 (18)	1-20M	450 (18)	1-20M	600 (24)	1-20M	600 (24)
1800	(6)	1-15M	0	1-15M	0	1-15M	300 (12)	1-15M	450 (18)	1-20M	600 (24)	1-20M	600 (24)	2-15M	600 (24)	2-15M	750 (30)	1-15M + 1-20M	750 (30)
2400	(8)	1-15M	0	1-20M	450 (18)	2-15M	600 (24)	2-15M	750 (30)	1-15M + 1-20M	900 (36)								
3000	(10)	1-20M	450 (18)	2-15M	750 (30)														
3600	(12)	1-15M + 1-20M	750 (30)																
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 2-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L1 Continued

					L	intel - 6	"Thick	x 16" D	eep (1	50mm 1	hick x	400mm	Deep)	s = 8"	(200mn	n)			
Lintal	Cnon								Unifo	rmly Dis	tributed	Load							
Lintel	Span	7.5k	N/m	11kl	N/m	14.5	kN/m	18k	N/m	21.5	κN/m	25.5	kN/m	29k	N/m	36.5	kN/m	43.5	kN/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	1750	Olb/ft	200	Olb/ft	2500	Olb/ft	3000	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	400 (16)	1-10M	400 (16)
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	400 (16)	1-15M	400 (16)	1-15M	400 (16)	1-15M	400 (16)
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	400 (16)	1-15M	400 (16)	1-15M	400 (16)	1-15M	600 (24)	1-15M	600 (24)
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	400 (16)	1-15M	400 (16)	1-15M	600 (24)	1-15M	600 (24)	1-20M	800 (32)	2-20M	800 (32)
2400	(8)	1-15M	0	1-15M	400 (16)	1-15M	400 (16)	1-20M	600 (24)	1-20M	800 (32)	2-15M	800 (32)	2-15M	1000 (40)	1-15M + 1-20M	1000 (40)		
3000	(10)	1-15M	0	1-20M	600 (24)	2-15M	800 (32)	2-15M	1000 (40)	1-15M + 1-20M	1000 (40)	2-20M	1200 (48)	1-10M + 2-20M	1200 (48)				
3600	(12)	1-20M	400 (16)	2-15M	800 (32)	1-15M + 1-20M	1000 (40)	1-10M + 2-20M	1200 (48)	1-15M + 2-20M	1400 (56)								
4200	(14)	2-15M	800 (32)	2-20M	1200 (48)	1-15M + 2-20M	1400 (56)												
4800	(16)	2-20M	1000 (40)	1-15M + 2-20M	1400 (56)														
5400	(18)	1-15M + 2-20M	1400 (56)																
6000	(20)																		

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 3-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 6'	'Thick	x 24" D	eep (15	50mm T	hick x (600mm	Deep),	s = 12"	(300mi	m)			
Lintol	Cnon								Unifo	rmly Dis	tributed	Load							
Linter	Span	7.5k	N/m	11kl	N/m	14.5ŀ	κN/m	18k	N/m	21.5	κN/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500		750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	2000		250	Olb/ft		Olb/ft	3500	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	300 (12)
1200	(4)	1-10M	9	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	9	1-10M	600 (24)	1-10M	600 (24)	1-15M	600 (24)
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	600 (24)	1-15M	600 (24)	1-15M	600 (24)	1-15M	600 (24)
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	600 (24)	1-15M	600 (24)	1-15M	600 (24)	1-15M	900 (36)
2400	(8)	1-10M	0	1-15M	0	1-15M	0	1-15M	600 (24)	1-15M	600 (24)	1-20M	900 (36)	1-20M	900 (36)	2-15M	900 (36)	2-15M	1200 (48)
3000	(10)	1-15M	0	1-15M	0	1-15M	600 (24)	1-20M	600 (24)	1-20M	900 (36)	2-15M	1200 (48)	1-15M + 1-20M	1200 (48)	2-20M	1200 (48)		
3600	(12)	1-15M	0	1-20M	600 (24)	1-20M	900 (36)	2-15M	900 (36)	2-15M	1200 (48)	2-20M	1500 (60)	1-10M + 2-20M	1500 (60)				
4200	(14)	1-20M	600 (24)	1-20M	900 (36)	2-15M	1200 (48)	1-15M + 1-20M	1500 (60)	2-20M	1500 (60)	1-15M + 2-20M	1800 (72)						
4800	(16)	1-20M	600 (24)	2-15M	1200 (48)	1-15M + 1-20M	1500 (60)	1-10M + 2-20M	1800 (72)	1-15M + 2-20M	1800 (72)	1-15M + 3-20M	1950 (78)						
5400	(18)	2-15M	900 (36)	2-20M	1500 (60)	1-10M + 2-20M	1800 (72)	3-20M	2100 (84)	1-15M + 3-20M	2100 (84)								
6000	(20)	1-15M + 1-20M	1200 (48)	1-10M + 2-20M	1800 (72)	3-20M	2100 (84)	1-15M + 3-20M	2400 (96)										

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- $\hbox{4.} \qquad \hbox{This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing". }$
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L1 Continued

					Li	intel - 6	"Thick	x 32" D	eep (1	50mm T	hick x 8	800mm	Deep),	s = 18"	(450mı	n)			
Lintal	0									rmly Dis									
Lintei	Span	7.5k	N/m	11kl	N/m	14.5	κN/m	18k	N/m	21.5	κN/m	29k	N/m	36.5	κN/m	43.5	kN/m	51k	N/m
		50	0v	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	2000	Olb/ft	2500	Olb/ft	300	Olb/ft	350	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	450 (18)	1-10M	450 (18)
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	450 (18)	1-15M	450 (18)	1-15M	450 (18)
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	900 (36)	1-15M	900 (36)	1-15M	900 (36)	1-15M	900 (36)
2400	(8)	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	900 (36)	1-20M	900 (36)	1-20M	900 (36)	1-20M	900 (36)	1-20M	900 (36)
3000	(10)	1-15M	0	1-15M	0	1-15M	0	1-20M	900 (36)	1-20M	900 (36)	1-20M	900 (36)	2-15M	1350 (54)	2-15M	1350 (54)	1-15M + 1-20M	1350 (54)
3600	(12)	1-15M	0	1-20M	0	1-20M	900 (36)	1-20M	900 (36)	1-20M	1350 (54)	2-15M	1350 (54)	1-15M + 1-20M	1350 (54)				
4200	(14)	1-20M	0	1-20M	900 (36)	1-20M	900 (36)	2-15M	1350 (54)	2-15M	1350 (54)	1-15M + 1-20M	1800 (72)						
4800	(16)	1-20M	0	1-20M	900 (36)	2-15M	1350 (54)	1-15M + 1-20M	1350 (54)	1-15M + 1-20M	1800 (72)	1-10M + 2-20M	1800 (72)						
5400	(18)	1-20M	900 (36)	2-15M	1350 (54)	1-15M + 1-20M	1800 (72)	2-20M	1800 (72)	1-10M + 2-20M	2250 (90)								
6000	(20)	2-15M	900 (36)	1-15M + 1-20M	1350 (54)	2-20M	1800 (72)	1-10M + 2-20M	2250 (90)	3-20M	2250 (90)								

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

INSULATING CONCRETE FORMS MANUFACTURERS ASSOCIATION ICF-MA.ORG

Table L2 8" Lintel Reinforcement with Uniformly Distributed Load

						Lintel -	8"Thic	k x 8" D	eep (2	00mm 1	Thick x	200mm	Deep)	s = 3"	(75mm))			
Lintal	Cnon								Unifo	rmly Dis	tributed	Load							
Lintel	Span	7.5k	N/m	11kl	N/m	14.5	κN/m	18k	N/m	21.5k	κN/m	25.5	κN/m	29k	N/m	33k	N/m	36.5	kN/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	1750	Olb/ft	2000	Olb/ft	2250	Olb/ft	2500	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	150 (6)	1-15M	150 (6)	1-15M	225 (9)	1-15M	225 (9)
1200	(4)	1-15M	0	1-15M	0	1-15M	0	1-15M	150 (6)	1-15M	150 (6)	1-20M	225 (9)	1-20M	300 (12)				
1500	(5)	1-15M	0	1-15M	0	1-20M	150 (6)	1-20M	225 (9)										
1800	(6)	1-15M	0	1-20M	150 (6)														
2400	(8)																		
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 2-15M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					L	intel - 8	"Thick	x 12" D	eep (2	00mm 1	Thick x	300mm	Deep)	s = 6"	(150mn	n)			
Lintel	Span								Unifo	mly Dis	tributed	Load							
Linter	Span	7.5k	N/m	11k	N/m	14.5ŀ	κN/m	18k	N/m	21.5k	N/m	25.5	kN/m	29k	N/m	33k	N/m	36.5	kN/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	1750	Olb/ft	2000	Olb/ft	2250	Olb/ft	250	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	300 (12)
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	300 (12)	1-15M	(12)	1-15M	300 (12)	1-15M	300 (12)
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	300 (12)	1-15M	300 (12)	1-15M	300 (12)	1-20M	450 (18)	1-20M	450 (18)
1800	(6)	1-15M	0	1-15M	0	1-15M	0	1-15M	300 (12)	1-20M	300 (12)	1-20M	450 (18)	2-15M	600 (24)	2-15M	600 (24)	2-15M	600 (24)
2400	(8)	1-15M	0	1-20M	0	1-20M	450 (18)	2-15M	600 (24)	1-15M + 1-20M	600 (24)	2-20M	750 (30)	1-10M + 2-20M	900 (36)				
3000	(10)	1-20M	0	2-15M	450 (18)	2-20M	750 (30)	1-10M + 2-20M	900 (36)										
3600	(12)	1-15M + 1-20M	300 (12)	1-10M + 2-20M	750 (30)														
4200	(14)	1-10M + 2-20M	600 (24)																
4800	(16)																		
5400	(18)																		
6000	(20)																		

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 1-15M + 2-20M bottom bar or equivalent combination of smaller bars.
- Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- $\hbox{4.} \qquad \hbox{This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing". } \\$
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L2 Continued

					L	intel - 8	"Thick	x 16" D	eep (2	00mm 1	Thick x	400mm	Deep)	s = 8"	(200mn	n)			
Lintal	Cnon								Unifo	rmly Dis	tributed	Load							
Lintei	Span	7.5kl	N/m	11kl	N/m	14.5	kN/m	18k	N/m	21.5	κN/m	25.5	κN/m	29k	N/m	36.5	kN/m	43.5	kN/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	1750	Olb/ft	2000	Olb/ft	2500	Olb/ft	3000	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	400 (16)	1-15M	400 (16)
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	400 (16)	1-15M	400 (16)	1-15M	400 (16)	1-15M	400 (16)
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	400 (16)	1-15M	400 (16)	1-15M	400 (16)	1-20M	600 (24)	1-20M	600 (24)
2400	(8)	1-15M	0	1-15M	0	1-15M	0	1-20M	400 (16)	1-20M	600 (24)	2-15M	600 (24)	2-15M	800 (32)	1-15M + 1-20M	800 (32)	2-20M	1000 (40)
3000	(10)	1-15M	0	1-20M	0	2-15M	400 (16)	2-15M	800 (32)	1-15M + 1-20M	800 (32)	2-20M	1000 (40)	1-10M + 2-20M	1000 (40)	1-10M + 3-20M	1200 (48)	1-10M + 3-20M	1200 (48)
3600	(12)	1-20M	0	2-15M	600 (24)	1-15M + 1-20M	800 (32)	2-20M	1000 (40)	1-10M + 2-20M	1200 (48)	3-20M	1200 (48)	1-10M + 3-20M	1400 (56)				
4200	(14)	2-15M	400 (16)	2-20M	800 (32)	1-10M + 2-20M	1200 (48)	3-20M	1400 (56)										
4800	(16)	2-20M	600 (24)	1-15M + 2-20M	1200 (48)	1-10M + 3-20M	1400 (56)												
5400	(18)	1-10M + 2-20M	1000 (40)	1-10M + 3-20M	1400 (56)														
6000	(20)	3-20M	1200 (48)																

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 8'	'Thick	x 24" D	eep (20	00mm T	hick x (600mm	Deep),	s = 12"	(300mi	m)			
Lintel	Span								Unifo	rmly Dis	tributed	Load							
Linter	Opan	7.5k	N/m	11k	N/m	14.5	kN/m	18k	N/m	21.5k	(N/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	2000	Olb/ft	250	Olb/ft	300	Olb/ft	350	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	600 (24)
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	600 (24)	1-15M	600 (24)
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	600 (24)	1-20M	600 (24)	1-20M	600 (24)
2400	(8)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	600 (24)	1-20M	600 (24)	1-20M	900 (36)	2-15M	900 (36)	2-15M	900 (36)
3000	(10)	1-15M	0	1-20M	0	1-20M	0	1-20M	600 (24)	1-20M	600 (24)	2-15M	900 (36)	1-15M + 1-20M	1200 (48)	1-15M + 1-20M	1200 (48)	2-20M	1200 (48)
3600	(12)	1-20M	0	1-20M	0	1-20M	600 (24)	2-15M	600 (24)	2-15M	900 (36)	1-15M + 1-20M	1200 (48)	1-10M + 2-20M	1500 (60)				
4200	(14)	1-20M	0	2-15M	600 (24)	2-15M	900 (36)	1-15M + 1-20M	900 (36)	2-20M	1200 (48)	1-15M + 2-20M	1500 (60)	1-10M + 3-20M	1800 (72)				
4800	(16)	2-15M	0	2-15M	600 (24)	2-20M	1200 (48)	1-10M + 2-20M	1200 (48)	1-15M + 2-20M	1500 (60)	1-10M + 3-20M	1800 (72)						
5400	(18)	2-15M	600 (24)	2-20M	900 (36)	1-10M + 2-20M	1500 (60)	1-15M + 2-20M	1500 (60)	1-10M + 3-20M	1800 (72)								
6000	(20)	1-15M + 1-20M	600 (24)	1-10M + 2-20M	1200 (48)	3-20M	1800 (72)	1-15M + 3-20M	1800 (72)										

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L2 Continued

					Li	ntel - 8'	'Thick	x 32" D	eep (20	00mm T	hick x	800mm	Deep),	s = 18"	(450m	m)			
Linkel	0								Unifo	rmly Dis	tributed	Load		,	,	-			
Linter	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	κN/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	2000	Olb/ft	2500	Olb/ft	300	Olb/ft	3500	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	450 (18)
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	900 (36)	1-15M	900 (36)
2400	(8)	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	900 (36)	1-20M	900 (36)	2-15M	900 (36)	2-15M	900 (36)
3000	(10)	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	900 (36)	2-15M	900 (36)	2-15M	900 (36)	2-15M	1350 (54)	2-15M	1350 (54)
3600	(12)	1-15M	0	1-20M	0	1-20M	0	2-15M	900 (36)	2-15M	900 (36)	2-15M	1350 (54)	1-15M + 1-20M	1350 (54)	2-20M	1350 (54)		
4200	(14)	1-20M	0	2-15M	0	2-15M	900 (36)	2-15M	900 (36)	2-15M	900 (36)	1-15M + 1-20M	1350 (54)	1-10M + 2-20M	1800 (72)				
4800	(16)	2-15M	0	2-15M	0	2-15M	900 (36)	1-15M + 1-20M	1350 (54)	2-20M	1350 (54)	1-10M + 2-20M	1800 (72)						
5400	(18)	2-15M	0	2-15M	900 (36)	1-15M + 1-20M	1350 (54)	2-20M	1350 (54)	1-10M + 2-20M	1800 (72)	3-20M	2250 (90)						
6000	(20)	2-15M	0	1-15M + 1-20M	900 (36)	2-20M	1350 (54)	1-10M + 2-20M	1800 (72)	3-20M	1800 (72)								

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

INSULATING CONCRETE FORMS MANUFACTURERS ASSOCIATION ICF-MA.ORG

Table L3 10" Lintel Reinforcement with Uniformly Distributed Load

Lintel Span			Lintel - 10"Thick x 8" Deep (250mm Thick x 200mm Deep), s = 3" (75mm)																
		Uniformly Distributed Load																	
		7.5kN/m		11kN/m		14.5kN/m		18kN/m		21.5kN/m		25.5kN/m		29kN/m		33kN/m		36.5kN/m	
		500lb/ft		750 lb/ft		1000lb/ft		1250lb/ft		1500lb/ft		1750lb/ft		2000lb/ft		2250lb/ft		2500lb/ft	
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	150 (6)	2-15M	225 (9)	2-15M	225 (9)
1200	(4)	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	225 (9)	2-15M	300 (12)				
1500	(5)	1-15M	0	1-15M	0	1-20M	0	1-20M	150 (6)	2-15M	225 (9)								
1800	(6)	1-15M	0	1-20M	0	2-15M	150 (6)												
2400	(8)	2-15M	0																
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 2-15M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

			Lintel - 10"Thick x 12" Deep (250mm Thick x 300mm Deep), s = 6" (150mm)																
Lintel Span		Uniformly Distributed Load																	
		7.5kN/m		11kN/m		14.5kN/m		18kN/m		21.5kN/m		25.5kN/m		29kN/m		33kN/m		36.5kN/m	
		500lb/ft		750 lb/ft		1000lb/ft		1250lb/ft		1500lb/ft		1750lb/ft		2000lb/ft		2250lb/ft		2500lb/ft	
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	9	1-15M	0	1-15M	300 (12)	1-15M	300 (12)
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	300 (12)	1-15M	300 (12)	1-20M	300 (12)	1-20M	300 (12)
1800	(6)	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	300 (12)	1-20M	300 (12)	2-15M	450 (18)	2-15M	450 (18)	2-15M	450 (18)
2400	(8)	1-15M	0	1-20M	0	1-20M	0	2-15M	300 (12)	1-15M + 1-20M	450 (18)	2-20M	600 (24)	2-20M	750 (30)	1-10M + 2-20M	750 (30)	1-15M + 2-20M	900 (36)
3000	(10)	1-20M	0	2-15M	0	1-15M + 1-20M	450 (18)	1-10M + 2-20M	600 (24)	1-15M + 2-20M	750 (30)								
3600	(12)	1-15M + 1-20M	0	2-20M	450 (18)	1-15M + 2-20M	750 (30)												
4200	(14)	1-10M + 2-20M	300 (12)	3-20M	750 (30)														
4800	(16)																		
5400	(18)																		
6000	(20)																		

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 3-20M bottom bar or equivalent combination of smaller bars.
- Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- $\hbox{4.} \qquad \hbox{This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing". } \\$
- Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L3 Continued

					Li	ntel - 10	Thick	x 16" [Deep (2	250mm	Thick x	400mn	n Deep)	, s = 8"	(200mi	m)			
Lintal	Cnon								Unifo	rmly Dis	tributed	Load				-			
Linter	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	κN/m	25.5	κN/m	29k	N/m	36.5	kN/m	43.5	kN/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	1750	Olb/ft	2000	Olb/ft	250	Olb/ft	3000	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	400 (16)
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	400 (16)	1-20M	400 (16)
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	1-20M	400 (16)	1-20M	400 (16)	1-20M	600 (24)
2400	(8)	1-15M	0	1-20M	0	1-20M	0	1-20M	0	1-20M	400 (16)	2-15M	400 (16)	2-15M	600 (24)	1-15M + 1-20M	800 (32)	2-20M	800 (32)
3000	(10)	1-20M	0	1-20M	0	2-15M	400 (16)	2-15M	400 (16)	1-15M + 1-20M	600 (24)	2-20M	800 (32)	1-10M + 2-20M	800 (32)	1-15M + 2-20M	1000 (40)	1-10M + 3-20M	1200 (48)
3600	(12)	1-20M	0	2-15M	0	1-15M + 1-20M	600 (24)	2-20M	800 (32)	1-10M + 2-20M	1000 (40)	3-20M	1000 (40)	1-10M + 3-20M	1200 (48)				
4200	(14)	2-15M	0	2-20M	400 (16)	1-10M + 2-20M	800 (32)	3-20M	1000 (40)	1-10M + 3-20M	1200 (48)								
4800	(16)	2-20M	0	1-10M + 2-20M	800 (32)	1-10M + 3-20M	1200 (48)	4-20M	1400 (56)										
5400	(18)	1-10M + 2-20M	400 (16)	1-10M + 3-20M	1000 (40)														
6000	(20)	3-20M	800 (32)																

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Liı	ntel - 10	"Thick	x 24" C	eep (2	50mm 1	hick x	600mm	Deep),	s = 12'	' (300m	m)			
Lintol	Span								Unifo	rmly Dis	tributed	Load							
Linter	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	(N/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	2000	Olb/ft	2500	Olb/ft	3000	Olb/ft	3500	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	9	1-10M	0	1-10M	0	1-15M	0
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	600 (24)
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	600 (24)	1-20M	600 (24)
2400	(8)	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	600 (24)	2-15M	600 (24)	2-15M	600 (24)	2-15M	900 (36)
3000	(10)	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	600 (24)	2-15M	600 (24)	1-15M + 1-20M	900 (36)	1-15M + 1-20M	900 (36)	2-20M	1200 (48)
3600	(12)	1-20M	0	2-15M	0	2-15M	0	2-15M	600 (24)	2-15M	600 (24)	2-20M	900 (36)	1-10M + 2-20M	1200 (48)	1-15M + 2-20M	1200 (48)		
4200	(14)	2-15M	0	2-15M	0	2-15M	600 (24)	1-15M + 1-20M	600 (24)	2-20M	900 (36)	1-10M + 2-20M	1200 (48)	3-20M	1500 (60)				
4800	(16)	2-15M	0	1-15M + 1-20M	0	2-20M	600 (24)	1-10M + 2-20M	900 (36)	1-15M + 2-20M	1200 (48)	1-10M + 3-20M	1500 (60)						
5400	(18)	1-15M + 1-20M	0	2-20M	600 (24)	1-10M + 2-20M	900 (36)	1-15M + 2-20M	1200 (48)	1-10M + 3-20M	1500 (60)								
6000	(20)	2-20M	0	1-10M + 2-20M	900 (36)	3-20M	1200 (48)	1-15M + 3-20M	1500 (60)										

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- $\hbox{4.} \qquad \hbox{This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing". } \\$
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L3 Continued

					Lir	ntel - 10	"Thick	x 32" D	eep (2	50mm 7	Thick x	800mm	Deep)	s = 18'	' (450m	m)			
Linkel	C								Unifo	rmly Dis	tributed	Load		,	,				
Lintel	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5k	κN/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	2000	Olb/ft	2500	Olb/ft	3000	Olb/ft	350	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	900 (36)
2400	(8)	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	2-15M	900 (36)	2-15M	900 (36)	2-15M	900 (36)
3000	(10)	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	900 (36)	2-15M	900 (36)	2-15M	900 (36)	1-15M + 1-20M	900 (36)
3600	(12)	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	900 (36)	2-15M	900 (36)	2-20M	900 (36)	2-20M	1350 (54)	1-10M + 2-20M	1350 (54)
4200	(14)	1-20M	0	2-15M	0	2-15M	0	2-15M	900 (36)	2-15M	900 (36)	1-15M + 1-20M	1350 (54)	1-10M + 2-20M	1350 (54)	1-15M + 2-20M	1800 (72)		
4800	(16)	2-15M	0	2-15M	0	2-15M	900 (36)	1-15M + 1-20M	900 (36)	2-20M	900 (36)	1-10M + 2-20M	1350 (54)						
5400	(18)	2-15M	0	2-15M	0	1-15M + 1-20M	900 (36)	2-20M	1350 (54)	1-10M + 2-20M	1350 (54)	3-20M	1800 (72)						
6000	(20)	2-15M	0	1-15M + 1-20M	900 (36)	1-10M + 2-20M	900 (36)	1-15M + 2-20M	1350 (54)	3-20M	1800 (72)	1-15M + 3-20M	2250 (90)						

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L4 12" Lintel Reinforcement with Uniformly Distributed Load

					L	_intel -	12"Thic	k x 8" [Deep (3	300mm	Thick x	200mn	n Deep)	, s = 3"	(75mm	1)			
Lintal	Cnon								Unifo	rmly Dis	tributed	Load							
Lintel	Span	7.5k	N/m	11kl	N/m	14.5	κN/m	18kl	N/m	21.5	κN/m	25.5	κN/m	29k	N/m	33k	N/m	36.5	kN/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	1750	Olb/ft	2000	Olb/ft	2250	Olb/ft	2500	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-15M	0										
1200	(4)	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	150 (6)	2-15M	150 (6)	2-15M	225 (9)
1500	(5)	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	150 (6)	2-15M	225 (9)	1-15M + 1-20M	225 (9)	2-20M	300 (12)		
1800	(6)	1-15M	0	1-20M	0	2-15M	0	2-15M	150 (6)	2-20M	225 (9)								
2400	(8)	2-15M	0	2-20M	0														
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 2-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 12	2"Thick	x 12" [Deep (3	300mm	Thick x	300mn	n Deep)	, s = 6"	(150mr	n)			
Lintel	Span								Unifo	rmly Dis	tributed	Load							
Linto	Оран	7.5k		11kl		14.5ŀ		18k		21.5k		25.51			N/m		N/m	-	kN/m
			lb/ft		lb/ft		Olb/ft	1250			lb/ft		Olb/ft		Olb/ft		Olb/ft		Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	9	1-15M	0	1-15M	0	1-20M	0
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	1-20M	300 (12)	1-20M	300 (12)
1800	(6)	1-15M	0	1-15M	0	1-20M	0	1-20M	0	1-20M	0	1-20M	300 (12)	2-15M	300 (12)	2-15M	300 (12)	2-15M	450 (18)
2400	(8)	1-20M	0	1-20M	0	1-20M	0	2-15M	300 (12)	1-15M + 1-20M	300 (12)	1-15M + 1-20M	450 (18)	2-20M	600 (24)	1-10M + 2-20M	600 (24)	1-15M + 2-20M	750 (30)
3000	(10)	1-20M	0	2-15M	0	1-15M + 1-20M	300 (12)	2-20M	450 (18)	1-15M + 2-20M	600 (24)	3-20M	750 (30)	1-10M + 3-20M	900 (36)				
3600	(12)	2-15M	0	2-20M	300 (12)	1-15M + 2-20M	600 (24)	1-10M + 3-20M	750 (30)										
4200	(14)	2-20M	0	3-20M	450 (18)	4-20M	900 (36)												
4800	(16)																		
5400	(18)																		
6000	(20)																		

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L4 Continued

					Li	ntel - 12	2"Thick	x 16" [Deep (3	300mm	Thick x	400mn	n Deep)	, s = 8"	(200mi	m)			
Lintal	0								Unifo	rmly Dis	tributed	Load							
Lintei	Span	7.5k	N/m	11kl	N/m	14.5	kN/m	18k	N/m	21.5	κN/m	25.5	κN/m	29k	N/m	36.5	kN/m	43.5	kN/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	1750	Olb/ft	200	Olb/ft	250	Olb/ft	3000	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	400 (16)
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	1-20M	0	1-20M	400 (16)	1-20M	400 (16)
2400	(8)	1-15M	0	1-20M	0	1-20M	0	1-20M	0	1-20M	0	2-15M	400 (16)	2-15M	400 (16)	1-15M + 1-20M	600 (24)	2-20M	800 (32)
3000	(10)	1-20M	0	1-20M	0	2-15M	0	2-15M	400 (16)	1-15M + 1-20M	400 (16)	2-20M	600 (24)	2-20M	800 (32)	1-15M + 2-20M	1000 (40)	1-10M + 3-20M	1000 (40)
3600	(12)	1-20M	0	2-15M	0	1-15M + 1-20M	400 (16)	2-20M	600 (24)	1-10M + 2-20M	800 (32)	1-15M + 2-20M	1000 (40)	1-10M + 3-20M	1000 (40)	4-20M	1200 (48)		
4200	(14)	2-15M	0	2-20M	0	1-10M + 2-20M	600 (24)	1-15M + 2-20M	800 (32)	1-10M + 3-20M	1000 (40)	4-20M	1200 (48)						
4800	(16)	2-20M	0	1-10M + 2-20M	400 (16)	1-10M + 3-20M	800 (32)	4-20M	1200 (48)										
5400	(18)	1-10M + 2-20M	0	1-10M + 3-20M	800 (32)														
6000	(20)	3-20M	400 (16)																

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Lir	ntel - 12	"Thick	x 24" D	еер (3	00mm 1	hick x	600mm	Deep)	s = 12'	'(300m	m)			
Lintal	Cnon								Unifo	rmly Dis	tributed	Load							
Lintel	Span	7.5k	N/m	11kl	N/m	14.5	kN/m	18k	N/m	21.5k	kN/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	2000	Olb/ft	2500	Olb/ft	3000	Olb/ft	3500	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1200	(4)	1-10M	9	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	9	1-10M	0	1-10M	0	1-15M	0
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	600 (24)
2400	(8)	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	600 (24)	2-15M	600 (24)	2-15M	600 (24)
3000	(10)	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	0	2-15M	600 (24)	1-15M + 1-20M	600 (24)	1-15M + 1-20M	900 (36)	2-20M	900 (36)
3600	(12)	1-20M	0	2-15M	0	2-15M	0	2-15M	0	2-15M	600 (24)	2-20M	900 (36)	1-10M + 2-20M	900 (36)	1-15M + 2-20M	1200 (48)	3-20M	1200 (48)
4200	(14)	2-15M	0	2-15M	0	2-15M	0	1-15M + 1-20M	600 (24)	2-20M	600 (24)	1-10M + 2-20M	1200 (48)	3-20M	1200 (48)	1-15M + 3-20M	1500 (60)		
4800	(16)	2-15M	0	1-15M + 1-20M	0	2-20M	600 (24)	1-10M + 2-20M	600 (24)	1-15M + 2-20M	900 (36)	1-10M + 3-20M	1500 (60)						
5400	(18)	1-15M + 1-20M	0	2-20M	0	1-10M + 2-20M	600 (24)	3-20M	900 (36)	1-10M + 3-20M	1200 (48)								
6000	(20)	2-20M	0	1-10M + 2-20M	600 (24)	3-20M	900 (36)	1-15M + 3-20M	1200 (48)										

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L4 Continued

					Lir	ntel - 12	"Thick	x 32" D	еер (3	00mm 1	Thick x	800mm	Deep)	s = 18'	' (450m	m)			
Lintal	C								Unifo	rmly Dis	tributed	Load							
Lintel	Span	7.5k	N/m	11kl	N/m	14.5	κN/m	18kl	N/m	21.5k	κN/m	29kl	N/m	36.5	κN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	2000	Olb/ft	2500	Olb/ft	3000	Olb/ft	3500	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance Bottom Reinf. Steel Stirrup End Distance 0 1-10M 0			Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0
2400	(8)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	900 (36)	2-15M	900 (36)
300	(10)	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	900 (36)	1-15M + 1-20M	900 (36)	1-15M + 1-20M	900 (36)
3600	(12)	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	0	1-15M + 1-20M	900 (36)	1-15M + 1-20M	900 (36)	2-20M	900 (36)	1-10M + 2-20M	1350 (54)
4200	(14)	1-20M	0	2-15M	0	2-15M	0	1-15M + 1-20M	0	1-15M + 1-20M	900 (36)	2-20M	900 (36)	1-10M + 2-20M	1350 (54)	1-10M + 2-20M	1350 (54)		
4800	(16)	2-15M	0	1-15M + 1-20M	0	1-15M + 1-20M	0	1-15M + 1-20M	900 (36)	2-20M	900 (36)	1-10M + 2-20M	1350 (54)	3-20M	1350 (54)				
5400	(18)	1-15M + 1-20M	0	1-15M + 1-20M	0	1-15M + 1-20M	0	2-20M	900 (36)	1-10M + 2-20M	900 (36)	3-20M	1350 (54)	1-15M + 3-20M	1800 (72)				
6000	(20)	1-15M + 1-20M	0	2-20M	0	1-10M + 2-20M	900 (36)	1-15M + 2-20M	900 (36)	3-20M	1350 (54)	1-15M + 3-20M	1800 (72)						

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

MANUFACTURERS ASSOCIATION ICF-MA.ORG

Table L5 6" Lintel Reinforcement Concentrated Load

						Lintel -	6"Thic	k x 8" [<u> </u>				Deep),	s = 3"	(75mm)				
Lintel	Snan								Unf	actored	Point L	oad							
Linter	Opan	4k	(N	6k	(N	8k	κN	10	kN	12	kN	14	kN	16	kN	18	kN	20	kN
		80	0lb	130	0lb	170)Olb	220)Olb	260	0lb	310	0lb	350)Olb	400)Olb	440)Olb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES						
1500	(5)	1-15M	NO	1-15M	NO	1-20M	YES												
1800	(6)	1-15M	NO																
2400	(8)																		
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 1-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					L	intel - 6	"Thick	х 12" С	Deep (1	50mm 1	hick x	300mm	Deep)	, s = 6"	(150mn	n)			
Lintel	Snan								Unt	actored	Point L	oad							
Linter	Span	4k	N.	6.5	kN	9k	(N	11.5	5kN	14	κN	16.5	5kN	19	kN	21.5	5kN	24	kN
		80			0lb	200		250		310	0lb		0lb)Olb	480)Olb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES										
1500	(5)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES	2-15M	YES
1800	(6)	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES	2-15M	YES				
2400	(8)	1-15M	NO	1-15M	NO	2-15M	YES	2-15M	YES	1-15M + 1-20M	YES								
3000	(10)	1-20M	NO	2-15M	NO														
3600	(12)	1-15M + 1-20M	NO																
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 2-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- $\hbox{4.} \qquad \hbox{This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing". }$
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L5 Continued

					L	intel - 6	"Thick	x 16" D	eep (1	50mm 1	hick x	400mm	Deep),	s = 8"	(200mn	n)			
Lintol	Cnon								Unf	actored	Point L	oad							
Lintel	Span	4k	ίN	7k	ίN	10	kN	13	kN	16	kN	19	kN	21	kN	24	kN	27	kN
		80	Olb	150	0lb	220	00lb	290	0lb	350	0lb	420	0lb	470	0lb	530)Olb	600)Olb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES								
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES	1-20M	YES								
1800	(6)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	2-15M	YES		
2400	(8)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES	2-20M	YES				
3000	(10)	1-15M	NO	1-20M	NO	2-15M	YES	2-15M	YES	1-15M + 1-20M	YES								
3600	(12)	1-20M	NO	2-15M	NO	1-15M + 1-20M	YES	1-10M + 2-20M	YES	1-15M + 2-20M	YES								
4200	(14)	2-15M	NO	2-20M	NO	1-15M + 2-20M	YES												
4800	(16)	2-20M	NO	1-15M + 2-20M	NO														
5400	(18)	1-15M + 2-20M	NO																
6000	(20)																		

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 3-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 6'	"Thick	x 24" D	eep (15	50mm T	hick x (600mm	Deep),	s = 12"	(300mı	n)			
Lintal	Span								Unf	actored	Point L	oad							
Linter	Span	41	(N	81	(N	12	kN	16	kN	20	kN	24	kN	28	kN	32	kN	36	kN
		80	0lb	170	0lb	260	00lb	350	00lb	440	0lb	530)Olb	620)Olb	710	0lb	800)Olb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES	1-10M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES								
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES	1-20M	YES								
2400	(8)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES	1-15M + 1-20M	YES	2-20M	YES		
3600	(12)	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	YES	2-15M	YES	2-20M	YES	1-10M + 2-20M	YES				
4200	(14)	1-20M	NO	1-20M	NO	2-15M	YES	1-15M + 1-20M	YES	2-20M	YES	1-15M + 2-20M	YES						
4800	(16)	1-20M	NO	2-15M	NO	1-15M + 1-20M	YES	1-10M + 2-20M	YES	1-15M + 2-20M	YES	1-15M + 3-20M	YES						
5400	(18)	2-15M	NO	2-20M	NO	1-10M + 2-20M	YES	3-20M	YES	1-15M + 3-20M	YES								
6000	(20)	1-15M + 1-20M	NO	1-10M + 2-20M	NO	3-20M	YES	1-15M + 3-20M	YES										

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L5 Continued

					Li	intel - 6	"Thick	x 32" D	eep (1	50mm T	hick x 8	800mm	Deep),	s = 18"	(450mr	n)			
Lintal	Cnon								Uni	actored	Point L	oad							
Linter	Span	4kN	l/m	9kN	N/m	14k	N/m	19k	N/m	24k	N/m	29k	N/m	34k	N/m	39k	N/m	44k	N/m
		800	lb/ft	2000	Olb/ft	3100	Olb/ft	4200	Olb/ft	5300	Olb/ft	6500	Olb/ft	7600	Olb/ft	8700	Olb/ft	9800	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup Bottom Stirrup End Reinf. End Distance Steel Distance NO 1-10M NO			Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES								
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES
2400	(8)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES	1-20M	YES	1-15M + 1-20M	YES
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	1-20M	YES	2-15M	YES				
3600	(12)	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	YES	2-15M	YES	1-15M + 1-20M	YES						
4200	(14)	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	YES	1-15M + 1-20M	YES								
4800	(16)	1-20M	NO	1-20M	NO	2-15M	YES	1-15M + 1-20M	YES	1-10M + 2-20M	YES								
5400	(18)	1-20M	NO	2-15M	NO	1-15M + 1-20M	YES	2-20M	YES										
6000	(20)	2-15M	NO	1-15M + 1-20M	NO	2-20M	YES	1-10M + 2-20M	YES										

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L6 8" Lintel Reinforcement Concentrated Load

			End Distance Steel Di																
Lintel	Snan								Unf	actored	Point L	oad							
Linter	Opan	4k	(N	6k	(N	8k	(N	10	kN	12	kN	14	kN	16	kN	18	kN	20	kN
		80	0lb	130	0lb	170	0lb	220)Olb	260	0lb	310	0lb	350)Olb	400)Olb	440	00lb
mm	(ft)	Bottom Reinf. Steel	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES
1200	(4)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-20M	YES	1-20M	YES						
1500	(5)	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES										
1800	(6)	1-15M	NO	1-20M	NO														
2400	(8)																		
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)												/						
6000	(20)																		

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 2-15M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					L	intel - 8	"Thick	x 12" C	eep (2	00mm 1	Thick x	300mm	Deep)	s = 6"	(150mn	n)			
Lintel	Span								Unf	actored	Point L	oad							
Linto	Оран	44	N.	6.5	kN	9k	(N	11.5	5kN	14	kN	16.	5kN	19	kN	21.5	5kN	24	kN
		80	Olb	140)0lb	200	00lb	250)Olb	310	0lb	370)Olb	420	00lb	480)Olb	530)Olb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES								
1500	(5)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES	1-15M + 1-20M	YES
1800	(6)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES	2-15M	YES	1-15M + 1-20M	YES
2400	(8)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	YES	2-20M	YES	1-10M + 2-20M	YES				
3000	(10)	1-20M	NO	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO										
3600	(12)	1-15M + 1-20M	NO	1-10M + 2-20M	NO														
4200	(14)	1-10M + 2-20M	NO																
4800	(16)																		
5400	(18)																		
6000	(20)																		

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 1-15M + 2-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L6 Continued

					L	intel - 8	"Thick	x 16" D	eep (2	00mm 1	hick x	400mm	Deep),	s = 8"	(200mn	n)			
Linkel	0								Unf	actored	Point L	oad				-			
Lintel	Span	4k	:N	7k	ίN	10	kN	13	kN	16	kN	19	kN	21	kN	24	kN	27	kN
		800	Olb	150	00lb	220	00lb	290	00lb	350	0lb	420	00lb	470	00lb	530	00lb	600	00lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES
1800	(6)	1-10M	NO	1-15M	YES	1-20M	YES	2-15M	YES	2-15M	YES								
2400	(8)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES	2-15M	YES	1-15M + 1-20M	YES	2-20M	YES		
3000	(10)	1-15M	NO	1-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	YES	2-20M	YES	1-15M + 2-20M	YES				
3600	(12)	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	YES	1-10M + 3-20M	YES						
4200	(14)	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO	3-20M	NO										
4800	(16)	2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO												
5400	(18)	1-10M + 2-20M	NO	1-10M + 3-20M	NO														
6000	(20)	3-20M	NO																

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 8'	'Thick	x 24" D	eep (20	00mm T	hick x (600mm	Deep),	s = 12"	(300mi	m)			
Lintal	Span								Unf	actored	Point L	oad							
Linter	Span	44	ίN	81	κN	12	kN	16	kN	20	kN	24	kN	28	kN	32	kN	36	kN
		80	0lb	170)Olb	260	00lb	350)Olb	440	0lb	530)Olb	620)Olb	710	0lb	800	00lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-20M	YES	1-20M	YES
2400	(8)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES	1-20M	YES	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	YES	1-15M + 1-20M	YES	2-20M	YES		
3600	(12)	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	YES	1-10M + 2-20M	YES				
4200	(14)	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	YES	1-15M + 2-20M	YES	1-10M + 3-20M	YES				
4800	(16)	2-15M	NO	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	YES	1-10M + 3-20M	YES						
5400	(18)	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	YES								
6000	(20)	1-15M + 1-20M	NO	1-10M + 2-20M	NO	3-20M	NO	1-15M + 3-20M	NO										

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- $\hbox{4.} \qquad \hbox{This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing". }$
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L6 Continued

					Li	ntel - 8	"Thick	x 32" D	eep (20	00mm T	hick x	300mm	Deep),	s = 18"	(450mi	m)			
Linkel	C								Unf	actored	Point L	oad							
Lintel	Span	4kN	l/m	9kN	l/m	14k	N/m	19k	N/m	24k	N/m	29k	N/m	34k	N/m	39k	N/m	44k	N/m
		800	lb/ft	2000	Olb/ft	3100	Olb/ft	4200	Olb/ft	5300	Olb/ft	6500	Olb/ft	760	Olb/ft	8700	Olb/ft	9800	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES
2400	(8)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	2-15M	YES	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	YES	2-15M	YES	1-15M + 1-20M	YES		
3600	(12)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	YES	2-20M	YES				
4200	(14)	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	YES						
4800	(16)	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	YES								
5400	(18)	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	3-20M	YES		/						
6000	(20)	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO										

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

MANUFACTURERS ASSOCIATION ICF-MA.ORG

Table L7 10" Lintel Reinforcement Concentrated Load

					L	_intel -	10" Thic	k x 8" [Deep (2	250mm	Thick x	200mn	n Deep)	, s = 3"	(75mm)			
Lintol	Cnon								Unf	actored	Point L	oad							
Lintel	Span	4k	:N	6k	κN	8k	κN	10	kN	12	kN	14	kN	16	kN	18	kN	20	kN
		80	Olb	130)0lb	170	00lb	220	0lb	260	00lb	310	0lb	350	00lb	400	00lb	440)Olb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES
1200	(4)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES	2-15M	YES
1500	(5)	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	YES						
1800	(6)	1-15M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO										
2400	(8)	2-15M	NO																
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 2-15M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

			End Reinf. Distance End Distance Reinf. Steel Distance																
Lintol	Span								Unf	actored	Point L	oad							
Linter	Span	44	N.	6.5	kN	9k	ίN	11.5	kΝ	14	κN	16.	5kN	19	kN	21.5	δkN	24	kN
		80	Olb	140	0lb	200	00lb	250	0lb	310	0lb	370	0lb	420)Olb	480	0lb	530)0lb
mm	(ft)	Bottom Reinf. Steel	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES
1800	(6)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	YES	2-15M	YES		YES
2400	(8)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO		NO	2-20M	YES		YES	3-20M	YES		
3000	(10)	1-20M	NO	2-15M	NO		NO		NO		NO								
3600	(12)	1-15M + 1-20M	NO	2-20M	NO		NO												
4200	(14)	1-10M + 2-20M	NO	3-20M	NO														
4800	(16)																		
5400	(18)																		
6000	(20)																		

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 3-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- $\hbox{4.} \qquad \hbox{This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing". } \\$
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L7 Continued

					Li	ntel - 10	0"Thick	x 16" [Deep (2	250mm	Thick x	400mn	n Deep)	, s = 8"	(200mi	m)			
Lintal	Cnon								Unf	actored	Point L	oad							
Lintel	Span	4k	ίN	7k	κN	10	kN	13	kN	16	kN	19	kN	21	kN	24	kN	27	kN
		80	Olb	150)Olb	220)0lb	290	0lb	350)0lb	420	0lb	470)Olb	530)0lb	600)Olb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES	1-20M	YES
1800	(6)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	YES	2-15M	YES
2400	(8)	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	YES	2-20M	YES	1-10M + 2-20M	YES
3000	(10)	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-15M + 2-20M	YES	1-10M + 3-20M	YES		
3600	(12)	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-10M + 3-20M	YES						
4200	(14)	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO	3-20M	NO	1-15M + 3-20M	NO								
4800	(16)	2-20M	NO	1-10M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	NO										
5400	(18)	1-10M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	NO										\ \		
6000	(20)	3-20M	NO	1-10M + 3-20M	NO														

NOTES

- Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Lii	ntel - 10	"Thick	x 24" D	eep (2	50mm 1	hick x	600mm	Deep)	s = 12'	' (300m	m)			
Lintol	Span								Unt	actored	Point L	oad							
Linter	Spari	4k	κN	84	κN	12	kN	16	kN	20	kN	24	kN	28	kN	32	kN	36	kN
		80	0lb	170)0lb	260	00lb	350)Olb	440	0lb	530	00lb	620	00lb	710	0lb	800	00lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES
1200	(4)	1-10M	ИО	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	ИО	1-15M	NO	1-15M	NO	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES
2400	(8)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	YES	1-10M + 2-20M	YES
3600	(12)	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	2-15M	NO	2-20M	NO	1-10M + 2-20M	YES	1-15M + 2-20M	YES		
4200	(14)	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	3-20M	YES				
4800	(16)	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO						
5400	(18)	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO								
6000	(20)	2-20M	NO	1-10M + 2-20M	NO	3-20M	NO	1-15M + 3-20M	NO										

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L7 Continued

					Lii	ntel - 10	"Thick	х 32" С	eep (2	50mm 1	hick x	800mm	Deep).	s = 18'	' (450m	m)			
Lintal	Cnon								_ • •	actored									
Lintel	Span	4kN	l/m	9k1	V/m	14k	N/m	19k	N/m	24k	N/m	29k	N/m	34k	N/m	39k	N/m	44k	N/m
		800	lb/ft	2000	Olb/ft	3100	Olb/ft	4200	Olb/ft	5300	Olb/ft	6500	Olb/ft	7600	Olb/ft	8700	Olb/ft	9800	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-20M	YES
2400	(8)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	YES	1-15M + 1-20M	YES
3600	(12)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-20M	NO	2-20M	YES				
4200	(14)	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	YES				
4800	(16)	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	NO	3-20M	NO						
5400	(18)	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	3-20M	NO								
6000	(20)	2-15M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-15M + 3-20M	NO								

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L8 12" Lintel Reinforcement Concentrated Load

			f. End Reinf. Distance Steel Distanc																
Lintal	Cnon								Unf	actored	Point L	oad							
Lintel	Span	4k	ίN	6k	ίN	8k	ίN	10	kN	12	kN	14	kN	16	kN	18	kN	20	kN
		80	Olb	130	0lb	170	0lb	220	0lb	260	0lb	310	0lb	350)Olb	400)Olb	440)Olb
mm	(ft)	Bottom Reinf. Steel	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	End	Reinf.	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-20M	YES
1200	(4)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES	2-15M	YES	2-15M	YES
1500	(5)	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO		YES				
1800	(6)	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-20M	NO								
2400	(8)	2-15M	NO	2-20M	NO														
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 2-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 12	2"Thick	x 12" [Deep (3	300mm	Thick x	300mn	n Deep)	, s = 6"	(150mı	m)			
Lintol	Span								Unf	actored	Point L	oad							
Linter	Span	44	N.	6.5	kN	9k	:N	11.5	kΝ	14	κN	16.5	δkN	19	kN	21.5	δkN	24	kN
		80	Olb	140	0lb	200	0lb	250	0lb	310	0lb	370	0lb	420)Olb	480	0lb	530)0lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES								
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES
1500	(5)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	YES	2-15M	YES
1800	(6)	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	YES	1-15M + 1-20M	YES
2400	(8)	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	YES	1-10M + 3-20M	YES
3000	(10)	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	YES				
3600	(12)	2-15M	NO	2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO										
4200	(14)	2-20M	NO	3-20M	NO	4-20M	NO												
4800	(16)																		
5400	(18)																		
6000	(20)																		

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- $\hbox{4.} \qquad \hbox{This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing". } \\$
- 5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L8 Continued

					Li	ntel - 12	2"Thick	x 16" [Deep (3	00mm	Thick x	400mn	n Deep)	, s = 8"	(200mi	m)			
Lintal	Cnon								Unf	actored	Point L	oad							
Lintel	Span	4k	ίN	7k	κN	10	kN	13	kN	16	kN	19	kN	21	kN	24	kN	27	kN
		800	Olb	150)0lb	220	00lb	290)0lb	350	0lb	420	0lb	470	00lb	530	00lb	600	00lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO								
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	YES
1800	(6)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	YES
2400	(8)	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-15M + 2-20M	YES
3000	(10)	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	YES		
3600	(12)	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	NO				
4200	(14)	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO								
4800	(16)	2-20M	NO	1-10M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	NO										
5400	(18)	1-10M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	NO												
6000	(20)	3-20M	NO																

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Lir	ntel - 12	"Thick	x 24" D	еер (3	00mm 1	hick x	600mm	Deep)	s = 12	" (300m	m)			
Lintal	Span								Unf	actored	Point L	oad							
Linter	Span	44	ίN	81	κN	12	kN	16	kN	20	kN	24	kN	28	kN	32	kN	36	kN
		80	0lb	170)Olb	260	00lb	350)0lb	440	0lb	530)Olb	620)Olb	710	00lb	800	00lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO								
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO
2400	(8)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	YES
3000	(10)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	YES
3600	(12)	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO		
4200	(14)	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	3-20M	NO				
4800	(16)	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	NO				
5400	(18)	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	3-20M	NO	1-10M + 3-20M	NO	4-20M	NO						
6000	(20)	2-20M	NO	1-10M + 2-20M	NO	3-20M	NO	1-15M + 3-20M	NO										

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- $\hbox{4.} \qquad \hbox{This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing". } \\$
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L8 Continued

					Liı	ntel - 12	"Thick	х 32" С	еер (3	00mm	Thick x	800mm	Deep)	s = 18'	' (450m	m)			
Lintal	Cnon								Unf	actored	Point L	oad							
Lintel	Span	4kN	l/m	9kN	V/m	14k	N/m	19k	N/m	24k	N/m	29k	N/m	34k	N/m	39k	N/m	44k	N/m
		800	lb/ft	2000	Olb/ft	3100	Olb/ft	4200	Olb/ft	5300	Olb/ft	6500	Olb/ft	7600	Olb/ft	870	Olb/ft	9800	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO
2400	(8)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	1-15M + 1-20M	NO	2-20M	YES
3600	(12)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	1-15M + 1-20M	NO	2-20M	NO	1-15M + 2-20M	NO		
4200	(14)	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO				
4800	(16)	2-15M	NO	1-15M + 1-20M	NO	1-15M + 1-20M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	NO	3-20M	NO						
5400	(18)	1-15M + 1-20M	NO	1-15M + 1-20M	NO	1-15M + 1-20M	NO	3-20M	NO	3-20M	NO	1-15M + 3-20M	NO						
6000	(20)	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-15M + 3-20M	NO								

NOTES

- 1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
- 2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
- 3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.
- 4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".
- 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Concentrated Point Load Table

Table C.1. Maximum Unfactored Point Load on a Solid Wall Without Opening

Solid Wall Length Under a Point Load, m(ft)	0.91 (3)	1.22 (4)	1.52 (5)
Maximum Unfactored Point Load, kN	225	300	375

NOTES:

- Provide beam pockets, as necessary.
- 2. In addition to the wall reinforcing required in the following tables, two additional 15M vertical bars shall be installed directly below the point load.
- 3. Maximum unfactored point loads given in Table C. 1 are only the wall capacity. It is the responsibility of the roof and floor designer to ensure adequate bearing for all framing members is provided on the concrete walls.

Stair Opening Tables

Table A.12. Above Grade Wall Distributed Horizontal Reinforcement at Stair Openings

Seismic Zone Classification: Sa (0.2) ≤ 1.75

Hourly Wind Pressure: $q_{1/50} \le 1.05$

							Horizor	ntal Steel (Size and	Spacing),	mm (in)		
w	all	Maximum S (Laterally U	tair Opening Insupported				Se	ismic Zone	Classific	ation, Sa(0.2)		
Thick	iness	Ler	ngth the Wall)	Block Height (in)		≤ 0.4			≤ 0.7			≤ 1.75	
							F	lourly Wind	d Pressure	e, q _{1/50} (kP	a)		
mm	(in)	m	(ft)			≤ 0.5			≤ 0.75			≤ 1.05	
150	(6)	4.6	(15)	12" and 18"	10M @	450	(18)	15M @	450	(18)	15M @	300	(12)
150	(6)	4.6	(15)	16"	10M @	400	(16)	15M @	400	(16)	15M @	300	(12)
200	(0)	5.2	(17)	12" and 18"	10M @	450	(18)	15M @	450	(18)	15M @	300	(12)
200	(8)	5.2	(17)	16"	10M @	400	(16)	15M @	400	(16)	15M @	300	(12)
250	(10)	5.2	(17)	12" and 18"	10M @	450	(18)	15M @	450	(18)	15M @	300	(12)
250	(10)	5.2	(17)	16"	10M @	400	(16)	15M @	400	(16)	15M @	300	(12)
300	(10)	F 0	(10)	12" and 18"	10M @	450	(18)	10M @	450	(18)	15M @	300	(12)
300	(12)	5.8	(19)	16"	10M @	400	(16)	10M @ 400 (1		(16)	15M @	300	(12)

- 1. This table to be used in conjunction with the "Design Parameters".
- 2. This table applies to all height of above grade walls where there is no lateral supports at the floor level because of stair opening.
- 3. The laterally unsupported length at the top of the wall is the dimension of the stair opening parallel to the wall.
- 4. Single bars are to be staggered and the vertical bars are to be placed between these staggered bars, as per Detail A.1 and A.2.
- 5. Increase the horizontal reinforcement as per this table and extend beyond the stair opening a minimum of 900mm (3'-0"), bend bars if necessary at wall corners.
- 6. Provide a minimum of 1.22m (4'-0") length of laterally supported wall on each side of the opening. The 1.22m (4'-0") length may be a perpendicular wall on the same side as the stair opening. Bend horizontal bars around the corner to provide the minimum required 900mm (3'-0") extension.
- 7. Increase the vertical reinforcement on each side of the stair opening per the "Design Limitation" noted in section 5.5.5.
- Place the reinforcing for 6," 8" and 10" thick wall in accordance with Detail A.1.
- 9. Provide two layers of indicated horizontal reinforcing for 300mm (12") walls. Place each layer as shown in Detail A.2.
- 10. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars.
- 11. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars.
- 12. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars

Table B. 5. Below Grade Wall Distributed Horizontal Reinforcement at Stair Opening for Seismic Zone Classification $Sa(0.2) \le 0.7$, Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, and Backfill

Seismic Zone Classification: Sa (0.2) ≤ 0.7

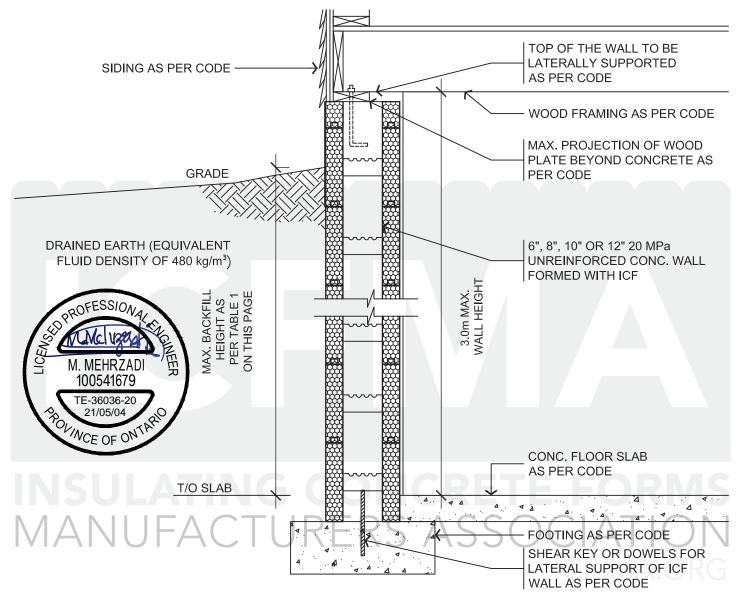
Hourly Wind Pressure: $q_{1/50} \le 1.05$

Backfill Equivalent Fluid Density: 480 kg/m3 (30pcf)

						Hor	rizontal St	eel (Size a	and Spacing),	mm (in)				
W Thick		Block Height				-	Seismic 2	Zone Clas	sification, Sa	(0.2)				
		(in)	2	2.44m (8')		3	.05m (10')	3	.66m (12')		4.	27m (14')	
mm	(in)					Se	ismic Zon	e Classific	ation, Sa(0.2) ≤ 0.25				
450	(0)	12" and 18"	15M @	450	(18)	2- 15M @	450	(18)						
150	(6)	16"	15M @	400	(16)	2- 15M @	400	(16)						
200	(0)	12" and 18"	15M @	450	(18)	2- 15M @	450	(18)	2- 15M @	450	(18)	2- 15M @	300	(12)
200	(8)	16"	15M @	400	(16)	15M @	400	(16)	2- 15M @	400	(16)	2- 15M @	400	(16)
050	(40)	12" and 18"	15M @	450	(18)	15M @	450	(18)	2- 15M @	450	(18)	2- 15M @	450	(18)
250	(10)	16"	15M @	400	(16)	15M @	400	(16)	15M @	400	(16)	2- 15M @	400	(16)
200	(10)	12" and 18"	15M @	450	(18)	15M @	450	(18)	15M @	450	(18)	2- 15M @	450	(18)
300	(12)	16"	15M @	400	(16)	15M @	400	(16)	15M @	400	(16)	2- 15M @	400	(16)
						Seisn	nic Zone (Classification	on, 0.25 < Sa	$1(0.2) \le 0.7$	7			
450	(0)	12" and 18"							· /					
150	(6)	16"												
000	(0)	12" and 18"	2- 15M @	450	(18)									
200	(8)	16"	2- 15M @	400	(16)									
050	(10)	12" and 18"	2- 15M @	450	(18)	2- 15M @	450	(18)						
250	(10)	16"	15M @	400	(16)	2- 15M @	400	(16)	RE				2 N	
200	(10)	12" and 18"	15M @	450	(18)	2- 15M @	450	(18)	2- 15M @	450	(18)	^ T		
300	(12)	16"	15M @	400	(16)	2- 15M @	400	(16)	2- 15M @	400	(16)	Δ		

- 1. This table to be used in conjunction with the "Design Parameters".
- 2. This table applies to all height of below grade walls where there is no lateral supports at the floor level because of stair opening.
- 3. The laterally unsupported length at the top of the wall is the dimension of the stair opening parallel to the wall.
- 4. The below grade wall maybe backfilled up to 6" below the top of the wall.
- 5. Single bars are to be staggered between first two slots of ICF web on inside face of wall. The vertical bars are to be placed between these staggered bars, as per Detail B.1.
- 6. Where two bars are specified, they are to be placed as a single bundled bar staggered between the first two slots of the ICF web on inside face of the wall. The vertical bars are to be placed between these staggered bars, as per Detail B.1.
- 7. Increase the horizontal reinforcement as per this table and extend beyond the stair opening a minimum of 900mm (3'-0"), bend bars if necessary at wall corners.
- 8. Provide a minimum of 1.22m (4'-0") length of laterally supported wall on each side of the opening. The 1.22m (4'-0") length may be a perpendicular wall on the same side as the stair opening. Bend horizontal bars around the corner to provide the minimum required 900mm (3'-0") extension.
- 9. Increase the vertical reinforcement on each side of the stair opening per the "Design Limitation" noted in section 5.5.5.
- 10. Reinforce the foundation wall at the stair opening as per the below grade wall reinforcement tables and this table for a minimum of 1.22m (4'-0") beyond each end of the stair opening for foundation wall that would not otherwise require reinforcing.
- 11. Basement walls with stair opening at locations with Seismic Zone Classification Sa (0.2) > 0.7 or Backfill Equivalent Fluid Density > 480 kg/m3 (30pcf) shall be designed by a professional engineer.
- 12. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars.
- 13. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars.
- 14. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars.

Table A.13. Bar Spacing Required at Each Side of the Stair Opening


		Latera	lly Unsupported Lei	ngth of the Wall (Sta	air Opening Length), m (ft)	
STable , mm (in)	5.7 (19)	5.1 (17)	4.5 (15)	3.9 (13)	2.7 (9)	2.1 (7)	1.5 (5)
				S _{REDUCED}			
1200 (48)	350 (14)	375 (15)	400 (16)	450 (18)	550 (22)	625 (25)	725 (29)
1050 (42)	300 (12)	325 (13)	350 (14)	400 (16)	475 (19)	550 (22)	625 (25)
1000 (40)	275 (11)	300 (12)	325 (13)	375 (15)	450 (18)	525 (21)	600 (24)
900 (36)	250 (10)	275 (11)	300 (12)	325 (13)	400 (16)	475 (19)	550 (22)
800 (32)	225 (9)	250 (10)	275 (11)	300 (12)	375 (15)	425 (17)	475 (19)
750 (30)	200 (8)	225 (9)	250 (10)	275 (11)	350 (14)	400 (16)	450 (18)
600 (24)	175 (7)	175 (7)	200 (8)	225 (9)	275 (11)	300 (12)	350 (14)
450 (18)			150 (6)	150 (6)	200 (8)	225 (9)	275 (11)
400 (16)				150 (6)	175 (7)	200 (8)	225 (9)
300 (12)						150 (6)	175 (7)

NOTES:

- 1. $S_{REDUCED}$ = the bar spacing (mm/in) required at the sides of the stair opening.
- 2. S_{TABLES} = the required bar spacing (mm/in) for a laterally supported wall as determined from above grade and below grade walls tables.
- 3. If the spacing of the additional vertical reinforcing required on each side of openings, described in the equation given in part 5.5., is less than 150mm (6"), a local design professional shall be retained to prepare the design in accordance with applicable standards.

Laterally Supported Foundation Wall Detail and Table

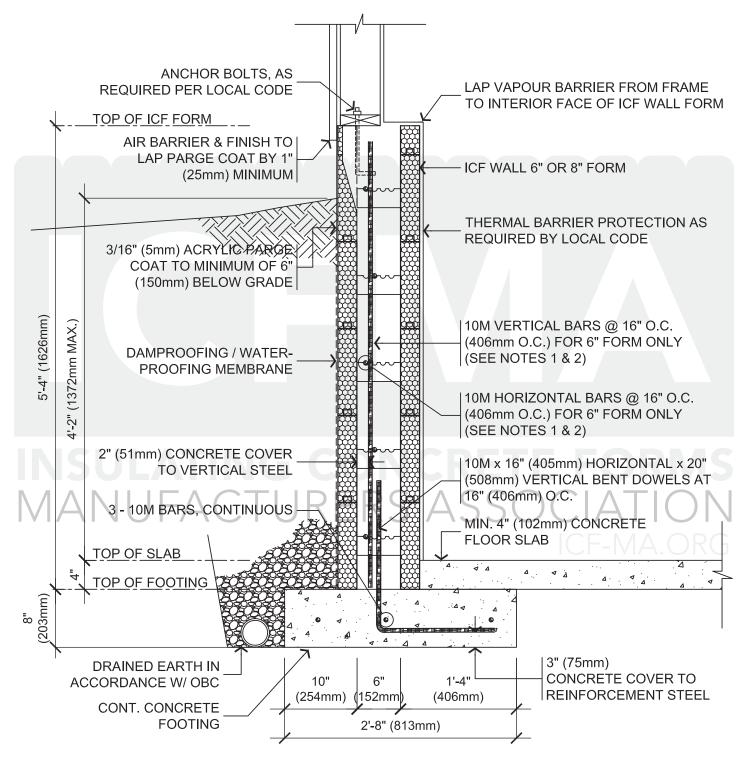
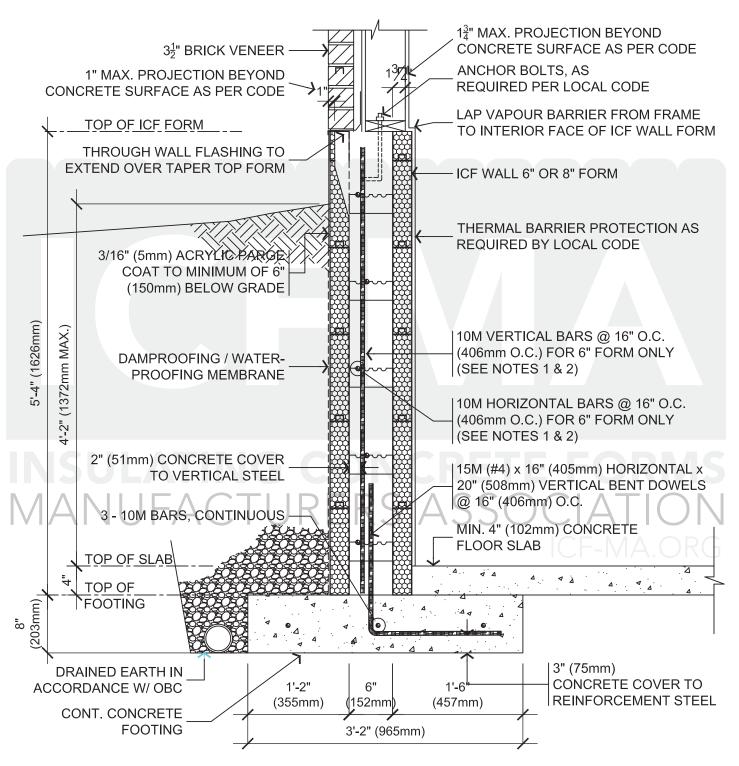

Detail B.2. Laterally Supported Foundation Wall

Table B.6. Maximum Height of Finish Ground Above Basement Floor

	Maximum Height of Finish	Ground Above Basement Floor	
		Height of Foundation Wall	
Minimum Wall Thickness	≤ 2.5m (8'-2")	>2.5m & ≤2.75m (9'-0")	>2.75m & ≤3.0m (9'-10")
6"	1.8m (5'-10")	1.6m (5'-3")	1.6m (5'-3")
8"	2.3m (7'-6")	2.3m (7'-6")	2.2m (7'-2")
10"	2.3m (7'-6")	2.6m (8'-6")	2.85m (9'-4")
12"	2.3m (7'-6")	2.6m (8'-6")	2.85m (9'-4")

- 1. This section references Part 9 of the 2015 National Building Code of Canada.
- 2. This detail applies to one- and two-story buildings conforming to part 9 of the 2015 National Building Code of Canada.
- 3. This table is a copy of NBCC 2015 T.9.15.4.2-A and OBC 2012(r2020) T.9.15.4.2-A.
- 4. This table to be used in conjunction with section 5.6. of this design manual.

Laterally Unsupported Foundation Wall Detail and Table (Knee Wall)



NOTES:

- 1. This detail applies to one- and two-story buildings conforming to part 9 of the 2015 National Building Code of Canada.
- 2. Wall reinforcing not required when using 8" forms or thicker.
- 3. Wall reinforcing not required for 6" forms where the backfill height above basement floor does not exceed 2'-7".
- Footing reinforcement and dowels are required for all cases.
- Refer to section 5.7., for additional information.

Detail B.3. Laterally Unsupported Foundation Wall (Knee Wall)

NOTES:

- 1. This detail applies to one- and two-story buildings conforming to part 9 of the 2015 National Building Code of Canada.
- 2. Wall reinforcing not required when using 8" forms.
- 3. Wall reinforcing mot required for 6" forms where the backfill height above basement floor does not exceed 2'-7".
- Footing reinforcement and dowels are required for all cases.
- 5. Refer to section 5.7., for additional information.

Detail B.4. Laterally Unsupported Foundation Wall (Knee Wall) with Brick Veneer

Ledger Connection Detail and Table

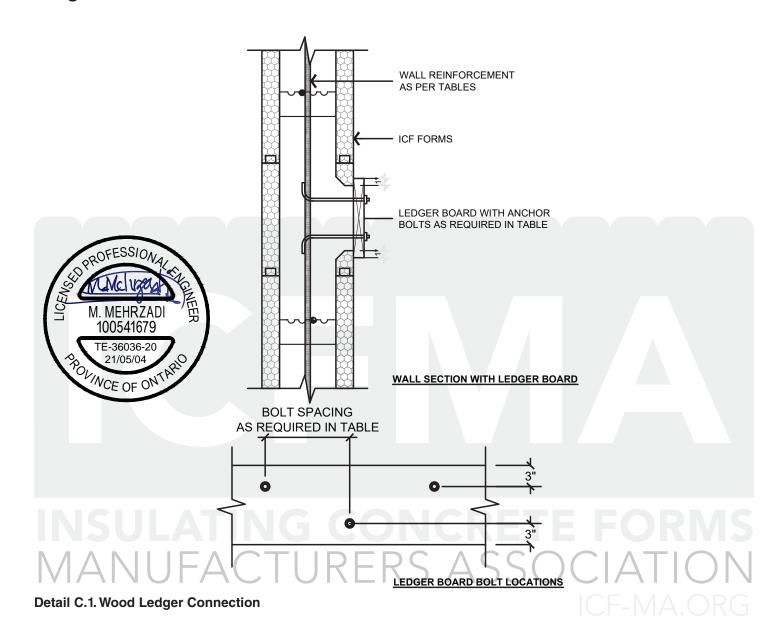
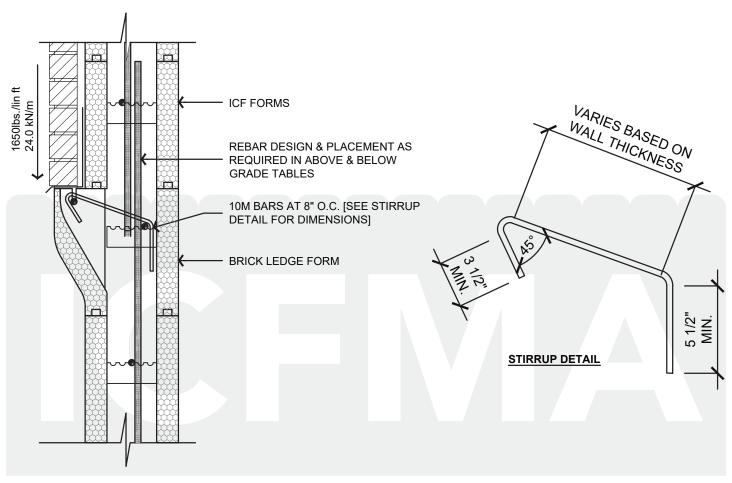
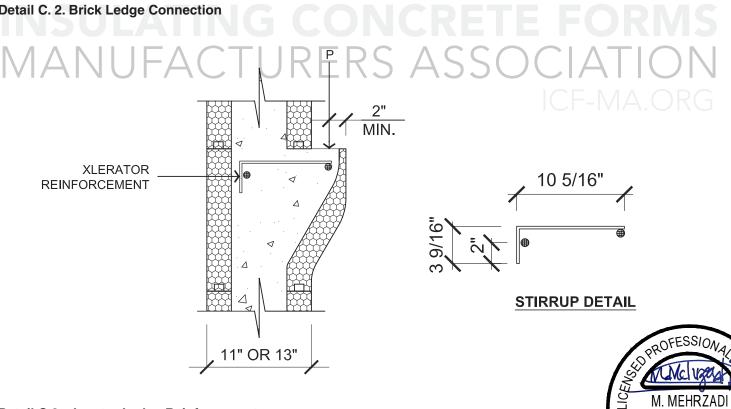



Table C.2. Floor Ledger Anchor Bolts Size and Spacing


			Minimum Spacing of	Staggered Anchors, in		
Anchor Bolt Diameter	Tie Spaing			Floor span, ft (m)		
		8' (2.44m)	12' (3.66m)	16' (4.88m)	20' (6.1m)	24' (7.32m)
4 /0	6"	18"	12"	12"	6"	6"
1/2"	8"	16"	16"	8"	8"	8"
<i>E</i> /OII	6"	24"	18"	12"	12"	6"
5/8"	8"	24"	16"	16"	8"	8"

- 1. Anchor bolts to be installed at the indicated spacing and staggered as shown.
- Design assumes floor ledger supports vertical floor load only. Design of floor diaphragm by others. 2.
- 3. Design loads: 40psf (1.9 kPa) floor live load, 15psf (0.7 kPa) floor dead load.
- Anchor bolts shall conform to the requirements of ASTM standard A307.
- Anchor bolt connection to be installed at Dry Service Condition.

Brick Ledge Detail and Table

Detail C. 2. Brick Ledge Connection

Detail C.3. xLerator Ledge Reinforcement

100541679

TE-36036-20 21/05/04 POVINCE OF ONT AR

Table C.3 Brick Ledge Load Capacity

Appl	ication	Capacity
Brick	Max 4" thick	0.6m /011 6"\ bish
	9.6m (31'-6") high	
Wood Floor Joists		
	0.7kPa (15psf) Dead Load	6.4m (21') Truibutary floor width
	1.9kPa (40psf) Live Load	
Other	maximum factored load	24kN/m (1650 plf)

NOTES:

- 1. Concrete Ledge reinforcement is to support floor framing and masonry veneer in conformance with the "Design Limitations"
- 2. The concrete ledge is to support uniformly distributed loads only. It is not to support concentrated load.
- 3. The above grade and below grade wall reinforcing tables include the effects of using the ledge to support floor framing.
- 4. 4. The below grade wall reinforcing tables include the effects of using the ledge to support masonry veneer.
- 5. The maximum brick height given does not account for windows. To include the effect of windows, it is necessary to calculate an effective brick height.
- 6. The ledge reinforcement is 10M hooked rebar as shown in Detail C.2. It is to be placed 6" or 8" on center as shown.

Footing Details and Tables

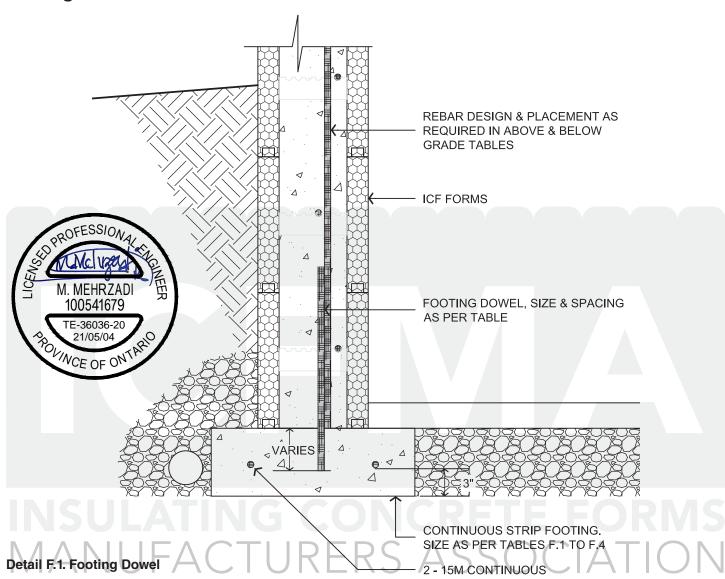


Table F.1- Footing Dowels Size and Spacing

		Maximum S	Spacing of Vertical Footing	g Dowels, in	
Rebar Diameter			Backfill Height, ft (m)		
	4' (1.22m)	6' (1.83m)	8' (2.44m)	10' (3.05m)	12' (3.66)
Seismic Zone Classification	on: Sa(0.2) ≤ 0.25				
10M	48"	48"	40"	8"	8"
15M	48"	48"	48"	16"	8"
Seismic Zone Classification	on: Sa(0.2) ≤ 1.20				
10M	24"	24"	16"	8"	
15M	24"	24"	24"	8"	8"
Seismic Zone Classification	on: Sa(0.2) ≤ 1.75				
10M	24"	24"	8"		
15M	24"	24"	16"	8"	8"

- 1. Footing Dowels to be installed as per Details F.1.
- 2. Provide 18" long straight dowels for $Sa(0.2) \le 0.4$ embedded 6" into the footing.
- 3. Provide 30"V x 8"H bent dowels for Sa(0.2) > 0.4 embedded 8" into the footing.
- 4. Provide 30"V x 8"H bent dowels embedded 8" into the footing at shear walls locations, matching the size and spacing of vertical bars of the shear walls.

Table F.2- Minimum Exterior Strip Footing Sizes Not Supporting Roof Loads

ICF Wall	Minimum Footing Width x Thickness, in x in								
Thickness, in (mm)			Allov	wable Soil Bearing	g Pressure, psf (kPa)				
(111111)	3000	(144)	2500 (120)		2000	0 (96)	1500 (72)		
	Ti	wo Storey - ICF B	asement Walls, V	Vood Main Floor V	Valls, and Wood	Second Floor Wa	lls		
6 (150)	16"	x 6"	16"	x 6"	16"	x 6"	20"	x 6"	
8 (200)	18"	x 6"	18"	x 6"	18"	x 6"	22"	x 6"	
10 (250)	20"	x 6"	20"	x 6"	20"	x 6"	24"	x 6"	
12 (300)	22"	x 6"	22"	x 6"	22"	x 6"	26"	x 8"	
	7	Two Storey - ICF I	Basement Walls,	ICF Main Floor W	alls, and Wood	Second Floor Wall	S		
6 (150)	16"	x 6"	18"	x 6"	22"	x 8"	28"	x 8"	
8 (200)	18"	x 6"	20"	x 6"	26"	x 8"	34"	x 10"	
10 (250)	20"	x 6"	24"	x 8"	30"	x 10"	40"	x 10"	
12 (300)	22"	x 8"	26"	x 8"	32"	x 10"	42"	x 12"	
		Two Storey - ICF	Basement Walls,	ICF Main Floor V	Valls, and ICF S	econd Floor Walls			
6 (150)	18"	x 8"	20"	x 8"	26"	x 10"	34"	x 10"	
8 (200)	22"	x 8"	26"	x 8"	32"	x 10"	42"	x 12"	
10 (250)	26"	x 8"	30"	x 10"	38"	x 12"	50"	x 14"	
12 (300)	26"	x 8"	32"	x 10"	40"	x 12"	52"	x 14"	
		One	Storey - ICF Base	ment Walls, and \	Vood Main Floo	r Walls			
6 (150)	16"	x 6"	16"	x 6"	16"	x 6"	16"	x 6"	
8 (200)	18"	x 6"	18"	x 6"	18"	x 6"	18"	x 6"	
10 (250)	20"	x 6"	20"	x 6"	20"	x 6"	20"	x 6"	
12 (300)	22"	x 6"	22"	x 6"	22"	x 6"	22"	x 6"	
,		One	Storey - ICF Bas	ement Walls, and	ICF Main Floor	Walls			
6 (150)	16"	x 6"	16"	x 6"	18"	x 6"	24"	x 8"	
8 (200)	18"	x 6"	18"	x 6"	22"	x 8"	28"	x 8"	
10 (250)	20"	x 6"	20"	x 6"	26"	x 8"	34"	x 10"	
12 (300)	22"	x 8"	22"	x 8"	28"	x 8"	36"	x 10"	

- All footings are to be reinforced with 2-15M continuous bars, as per drawing F.1.
- Refer to the Canadian Design Limitations for maximum floor and roof spans and loads. 2. 3.
 - This table does not include masonry veneer. Increase the footing width by 2" and the thickness by 1" for:
 - a. Every 12'-0" of masonry veneer for 3000 psf soil bearing capacity.
 - Every 10'-0" of masonry veneer for 2500psf soil bearing capacity. c. Every 8'-0" of masonry veneer for 2000psf soil bearing capacity.
 - Every 6'-0" of masonry veneer for 1500psf soil bearing capacity.
- The footing size for locations with Sa (0.2) > 0.4 to be the larger of 30" wide by 12" deep or the size shown in the table.

Table F.3- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads ≤ 2kPa

ICF Wall Thickness, in (mm)	Minimum Footing Width x Thickness, in x in								
	Allowable Soil Bearing Pressure, psf (kPa)								
	3000	(144)	2500 (120)		2000 (96)		1500 (72)		
	T	wo Storey - ICF B	asement Walls, V	Vood Main Floor	Walls, and Wood	Second Floor Wa	lls		
6 (150)	16"	x 6"	18"	x 6"	22"	x 8"	28"	x 8"	
8 (200)	18"	x 6"	20"	x 6"	24"	x 8"	32"	x 10"	
10 (250)	20"	x 6"	20"	x 6"	26"	x 8"	34"	x 10"	
12 (300)	22"	x 8"	22"	x 8"	28"	x 8"	36"	x 10"	
		Two Storey - ICF I	Basement Walls,	ICF Main Floor W	alls, and Wood S	Second Floor Wall	S		
6 (150)	20"	x 8"	24"	x 8"	28"	x 10"	38"	x 12"	
8 (200)	22"	x 8"	26"	x 10"	32"	x 10"	44"	x 12"	
10 (250)	24"	x 8"	30"	x 10"	36"	x 10"	48"	x 14"	
12 (300)	26"	x 8"	32"	x 10"	38"	x 12"	52"	x 14"	
·		Two Storey - ICF	Basement Walls	, ICF Main Floor	Walls, and ICF S	econd Floor Walls			
6 (150)	22"	x 8"	26"	x 10"	32"	x 10"	44"	x 12"	
8 (200)	26"	x 10"	30"	x 10"	38"	x 12"	50"	x 14"	
10 (250)	30"	x 10"	36"	x 12"	44"	x 14"	58"	x 16"	
12 (300)	30"	x 10"	36"	x 12"	46"	x 14"	60"	x 16"	
		One S	Storey - ICF Base	ement Walls, and	Wood Main Floo	r Walls			
6 (150)	16"	x 6"	16"	x 6"	18"	x 6"	24"	x 8"	
8 (200)	18"	x 6"	18"	x 6"	20"	x 6"	26"	x 8"	
10 (250)	20"	x 6"	20"	x 6"	22"	x 6"	28"	x 8"	
12 (300)	22"	x 6"	22"	x 6"	22"	x 6"	30"	x 8"	
'		One	Storey - ICF Bas	ement Walls, and	ICF Main Floor	Walls			
6 (150)	16"	x 6"	20"	x 8"	24"	x 8"	32"	x 10"	
8 (200)	20"	x 8"	24"	x 8"	28"	x 10"	38"	x 10"	
10 (250)	22"	x 8"	26"	x 8"	32"	x 10"	44"	x 12"	
12 (300)	24"	x 8"	28"	x 10"	34"	x 10"	46"	x 12"	

- 1. All footings are to be reinforced with 2-15M continuous bars, as per drawing F.1.
- 2. Refer to the Canadian Design Limitations for maximum floor and roof spans and loads.
- 3. This table does not include masonry veneer. Increase the footing width by 2" and the thickness by 1" for:
 - a. Every 12'-0" of masonry veneer for 3000 psf soil bearing capacity.
 b. Every 10'-0" of masonry veneer for 2500psf soil bearing capacity.
 - c. Every 8'-0" of masonry veneer for 2000psf soil bearing capacity.
 - Every 8-0" of masonry veneer for 2000pst soil bearing capacity.
 Every 6'-0" of masonry veneer for 1500psf soil bearing capacity.
- 4. The footing size for locations with Sa (0.2) > 0.4 to be the larger of 30" wide by 12" deep or the size shown in the table.

Table F.4- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads ≤4kPa

ICF Wall Thickness, in (mm)	Minimum Footing Width x Thickness, in x in							
	Allowable Soil Bearing Pressure, psf (kPa)							
(111111)	3000	(144)	2500 (120)		2000 (96)		1500 (72)	
	T	wo Storey - ICF B	asement Walls, V	Vood Main Floor W	alls, and Wood	Second Floor Wa	lls	
6 (150)	18"	x 8"	22"	x 8"	26"	x 10"	36"	x 10"
8 (200)	20"	x 8"	24"	x 8"	28"	x 10"	38"	x 10"
10 (250)	20"	x 6"	24"	x 8"	30"	x 10"	40"	x 10"
12 (300)	22"	x 8"	26"	x 8"	32"	x 10"	42"	x 12"
		Two Storey - ICF I	Basement Walls,	ICF Main Floor Wa	alls, and Wood S	Second Floor Wall	S	
6 (150)	22"	x 8"	28"	x 10"	34"	x 12"	44"	x 14"
8 (200)	26"	x 10"	30"	x 10"	38"	x 12"	50"	x 14"
10 (250)	28"	x 10"	34"	x 12"	42"	x 12"	56"	x 16"
12 (300)	30"	x 10"	36"	x 12"	44"	x 14"	58"	x 16"
,		Two Storey - ICF	Basement Walls,	, ICF Main Floor W	alls, and ICF S	econd Floor Walls		•
6 (150)	26"	x 10"	30"	x 12"	38"	x 12"	50"	x 14"
8 (200)	30"	x 12"	34"	x 12"	44"	x 14"	58"	x 16"
10 (250)	34"	x 12"	40"	x 14"	50"	x 16"	66"	x 18"
12 (300)	34"	x 12"	40"	x 14"	50"	x 16"	68"	x 18"
		One S	Storey - ICF Base	ment Walls, and V	Vood Main Floo	r Walls		
6 (150)	16"	x 6"	18"	x 6"	22"	x 8"	30"	x 10"
8 (200)	18"	x 6"	20"	x 6"	24"	x 8"	32"	x 10"
10 (250)	20"	x 6"	22"	x 6"	26"	x 8"	34"	x 10"
12 (300)	22"	x 8"	22"	x 8"	28"	x 8"	38"	x 10"
'		One	Storey - ICF Bas	ement Walls, and	ICF Main Floor	Walls		
6 (150)	20"	x 8"	24"	x 8"	30"	x 10"	38"	x 12"
8 (200)	22"	x 8"	28"	x 10"	34"	x 10"	44"	x 12"
10 (250)	26"	x 8"	30"	x 10"	38"	x 12"	50"	x 14"
12 (300)	26"	x 8"	32"	x 10"	40"	x 12"	52"	x 14"

- All footings are to be reinforced with 2-15M continuous bars, as per drawing F.1.
- Refer to the Canadian Design Limitations for maximum floor and roof spans and loads. 2. 3.
 - This table does not include masonry veneer. Increase the footing width by 2" and the thickness by 1" for:
 - a. Every 12'-0" of masonry veneer for 3000 psf soil bearing capacity. Every 10'-0" of masonry veneer for 2500psf soil bearing capacity.
 - c. Every 8'-0" of masonry veneer for 2000psf soil bearing capacity.
 - Every 6'-0" of masonry veneer for 1500psf soil bearing capacity.
- The footing size for locations with Sa (0.2) > 0.4 to be the larger of 30" wide by 12" deep or the size shown in the table.

Appendix A: Equivalent Spectral Response Acceleration for ICF Walls, $\mathbf{S}_{\mathbf{a},\mathsf{ICF}}$

Province and Location	S _{a,ICF}
British Columbia	
100 Mile House	0.113
Abbotsford	0.486
Agassiz	0.338
Alberni	0.701
Ashcroft	0.160
Bamfield	1.010
Beatton River	0.083
Bella Bella	0.231
Bella Coola	0.172
Burns Lake	0.080
Cache Creek	0.157
Campbell River	0.482
Carmi	0.120
Castlegar	0.100
Chetwynd	0.121
Chilliwack	0.383
Comox	0.536
Courtenay	0.541
Cranbrook	0.138
Crescent Valley	0.101
Crofton	0.781
Dawson Creek	0.098
Dease Lake	0.091
Dog Creek	0.140
Duncan	0.816
Elko	0.174
Fernie	0.174
Fort Nelson	0.103
Fort St. John	0.094
Glacier	0.142
Gold River	0.748
Golden	0.170
Grand Forks	0.108
Greenwood	0.113
Hope	0.280
Jordan River	0.980
Kamloops	0.123
Kaslo	0.109
Kelowna	0.122
Kimberley	0.130
Kitimat Plant	0.167
Kitimat Townsite	0.167
Ladysmith	0.768
Langford	0.890
Lillooet	0.206
$S = max[^2/, E(0.2)S(0.2)]^2/, E(0.2)S(0.2)^2/$	(0.5)9 (0.5)

Province and Location Salor Lytton 0.219 Mackenzie 0.117 Masset 0.588 McBride 0.162 McLeod Lake 0.110 Merritt 0.175 Mission City 0.455 Montrose 0.102 Nakusp 0.102 Nanaimo 0.719 Nelson 0.103 Ocean Falls 0.199 Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Prince George 0.089 Prince Rupert 0.264 Prince Rupert 0.264 Prince Rupert 0.254 Queen Charlotte City 1.025 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.404 <th>ont opectial its</th> <th>cspo</th>	ont opectial its	cspo
Lytton 0.219 Mackenzie 0.117 Masset 0.588 McBride 0.162 McLeod Lake 0.110 Merritt 0.175 Mission City 0.455 Montrose 0.102 Nakusp 0.102 Nanaimo 0.719 Nelson 0.103 Ocean Falls 0.199 Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Squamish	Province and Location	S _{a,ICF}
Masset 0.588 McBride 0.162 McLeod Lake 0.110 Merritt 0.175 Mission City 0.455 Montrose 0.102 Nakusp 0.102 Nanaimo 0.719 Nelson 0.103 Ocean Falls 0.199 Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 <	Lytton	l
McBride 0.162 McLeod Lake 0.110 Merritt 0.175 Mission City 0.455 Montrose 0.102 Nakusp 0.102 Nanaimo 0.719 Nelson 0.103 Ocean Falls 0.199 Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Queen Charlotte City 1.025 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823	Mackenzie	0.117
McLeod Lake 0.110 Merritt 0.175 Mission City 0.455 Montrose 0.102 Nakusp 0.102 Nanaimo 0.719 Nelson 0.103 Ocean Falls 0.199 Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alice 0.950 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090	Masset	0.588
Merritt 0.175 Mission City 0.455 Montrose 0.102 Nakusp 0.102 Nanaimo 0.719 Nelson 0.103 Ocean Falls 0.199 Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Queen Charlotte City 1.025 Queenel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squam	McBride	0.162
Mission City 0.455 Montrose 0.102 Nakusp 0.102 Nanaimo 0.719 Nelson 0.103 Ocean Falls 0.199 Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Ste	McLeod Lake	0.110
Montrose 0.102 Nakusp 0.102 Nanaimo 0.719 Nelson 0.103 Ocean Falls 0.199 Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tar	Merritt	0.175
Nakusp 0.102 Nanaimo 0.719 Nelson 0.103 Ocean Falls 0.199 Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tar	Mission City	0.455
Nanaimo 0.719 Nelson 0.103 Ocean Falls 0.199 Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tarrace 0.145 Tofino 1.018 Trail <td>Montrose</td> <td>0.102</td>	Montrose	0.102
Nelson 0.103 Ocean Falls 0.199 Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Togino 1.018 Trail 0.101 Ucluele	Nakusp	0.102
Ocean Falls 0.199 Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tof	Nanaimo	0.719
Osoyoos 0.150 Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouve	Nelson	0.103
Parksville 0.665 Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet </td <td>Ocean Falls</td> <td>0.199</td>	Ocean Falls	0.199
Penticton 0.138 Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Re	Osoyoos	0.150
Port Alberni 0.721 Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region	Parksville	0.665
Port Alice 0.950 Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region	Penticton	0.138
Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region	Port Alberni	0.721
Port Hardy 0.533 Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region	Port Alice	0.950
Port McNeill 0.546 Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region		
Port Renfrew 1.010 Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region		
Powell River 0.464 Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region		
Prince George 0.089 Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region		
Prince Rupert 0.264 Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region		
Princeton 0.204 Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region	<u> </u>	
Qualicum Beach 0.652 Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region		
Queen Charlotte City 1.025 Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.404 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region		
Quesnel 0.088 Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region		
Revelstoke 0.109 Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region		
Salmon Arm 0.104 Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region		
Sandspit 0.868 Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region	Salmon Arm	
Sechelt 0.589 Sidney 0.823 Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region	Sandspit	0.868
Smith River 0.370 Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region Burnaby 0.540	-	0.589
Smithers 0.090 Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region Burnaby 0.540	Sidney	0.823
Sooke 0.928 Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region Burnaby 0.540	Smith River	0.370
Squamish 0.434 Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region Burnaby 0.540	Smithers	0.090
Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region Burnaby 0.540	Sooke	0.928
Stewart 0.132 Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region Burnaby 0.540	Squamish	0.434
Tahsis 0.890 Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region Burnaby 0.540	•	
Taylor 0.093 Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region Burnaby 0.540		
Terrace 0.145 Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region Burnaby 0.540	Taylor	
Tofino 1.018 Trail 0.101 Ucluelet 1.033 Vancouver Region Burnaby 0.540	_	
Trail 0.101 Ucluelet 1.033 Vancouver Region Burnaby		
Ucluelet 1.033 Vancouver Region Burnaby		
Vancouver Region Burnaby		
Burnaby		
(Simon Fraser Univ.) 0.540		
	(Simon Fraser Univ.)	0.540

Province and Location	S _{a,ICF}
Cloverdale	0.560
Haney	0.491
Ladner	0.642
Langley	0.541
New Westminster	0.561
North Vancouver	0.558
Richmond	0.616
Surrey (88 Ave & 156 St.)	0.552
Vancouver (City Hall)	0.592
Vancouver (Granville & 41 Ave)	0.601
West Vancouver	0.572
Vernon	0.108
Victoria Region	
Victoria (Gonzales Hts)	0.861
Victoria (Mt Tolmie)	0.853
Victoria	0.868
Whistler	0.315
White Rock	0.601
Williams Lake	0.110
Youbou	0.846
Alberta	
Athabasca	0.043
Banff	0.178
Barrhead	0.064
Beaverlodge	0.102
Brooks	0.076
Calgary	0.126
Campsie	0.067
Camrose	0.058
Canmore	0.177
Cardston	0.196
Claresholm	0.147
Cold Lake	0.034
Coleman	0.189
Coronation	0.048
Cowley	0.191
Drumheller	0.077
Edmonton	0.062
Edson	0.111
Embarras Portage	0.031
Fairview	0.071
Fort MacLeod	0.158
Fort McMurray	0.034
Fort Saskatchewan	0.053

Province and Location	S _{a,ICF}
Fort Vermilion	0.036
Grande Prairie	0.093
Habay	0.045
Hardisty	0.043
High River	0.134
Hinton	0.175
Jasper	0.183
Alberta	
Keg River	0.042
Lac la Biche	0.038
Lacombe	0.081
Lethbridge	0.125
Manning	0.049
Medicine Hat	0.060
Peace River	0.058
Pincher Creek	0.195
Ranfurly	0.042
Red Deer	0.085
Rocky Mountain House	0.116
Slave Lake	0.047
Stettler	0.066
Stony Plain	0.069
Suffield	0.068
Taber	0.101
Turner Valley	0.160
Valleyview	0.078
Vegreville	0.044
Vermilion	0.038
Wagner	0.048
Wainwright	0.040
Wetaskiwin	0.069
Whitecourt	0.079
Wimborne	0.087
Saskatchewan	
Assiniboia	0.076
Battrum	0.042
Biggar	0.037
Broadview	0.048
Dafoe	0.040
Dundurn	0.039
Estevan	0.073
Hudson Bay	0.034
Humboldt	0.037
Island Falls	0.031
Kamsack	0.037

 $[\]mathbf{S_{a,ICF}} = \text{max}[^2/_3 \text{ F}(0.2) \\ \mathbf{S_a}(0.2), \ ^2/_3 \text{ F}(0.5) \\ \mathbf{S_a}(0.5), \ \mathbf{F}(0.5) \ \\ \mathbf{S_a}(0.5)] \\ \mathbf{I_E} \\ \mathbf{M_v}/1.47$

Province and Location	S _{a,ICF}
Kindersley	0.039
Lloydminster	0.036
Maple Creek	0.048
Meadow Lake	0.034
Melfort	0.035
Melville	0.044
Moose Jaw	0.058
Nipawin	0.034
North Battleford	0.036
Prince Albert	0.034
Qu'Appelle	0.054
Regina	0.060
Rosetown	0.038
Saskatoon	0.037
Scott	0.037
Strasbourg	0.046
Swift Current	0.045
Uranium City	0.032
Weyburn	0.002
Yorkton	
	0.040
Manitoba	0.000
Beausejour	0.033
Boissevain	0.037
Brandon	0.031
Churchill	0.032
Dauphin	0.035
Flin Flon	0.032
Gimli	0.032
Island Lake	0.033
Lac du Bonnet	0.033
Lynn Lake	0.032
Morden	0.031
Neepawa	0.031
Pine Falls	0.033
Portage la Prairie	0.032
Rivers	0.037
Sandilands	0.032
Selkirk	0.032
Split Lake	0.032
Steinbach	0.032
Swan River	0.035
The Pas	0.032
Thompson	0.032
Virden	0.041
Winnipeg	0.032
Ontario	
Ailsa Craig	0.064

Province and Location	S _{a,ICF}
Ajax	0.117
Alexandria	0.267
Alliston	0.076
Almonte	0.173
Armstrong	0.037
Arnprior	0.186
Atikokan	0.039
Attawapiskat	0.043
Aurora	0.087
Bancroft	0.105
Barrie	0.077
Barriefield	0.110
Beaverton	0.082
Belleville	0.105
Belmont	0.073
Kitchenuhmay-koosib	
(Big Trout Lake)	0.033
CFB Borden	0.075
Bracebridge	0.084
Bradford	0.081
Brampton	0.096
Brantford	0.089
Brighton	0.106
Brockville	0.151
Burk's Falls	0.096
Burlington	0.143
Cambridge	0.084
Campbellford	0.097
Cannington	0.084
Carleton Place	0.164
Cavan	0.092
Centralia	0.064
Chapleau	0.050
Chatham	0.070
Chesley	0.062
Clinton	0.061
Coboconk	0.086
Cobourg	0.106
Cochrane	0.122
Colborne	0.106
Collingwood	0.070
Cornwall	0.266
Corunna	0.060
Deep River	0.192
Deseronto	0.106
Dorchester	0.072
Dorion	0.035
Dresden	0.067

Province and Location Salce Dryden 0.040 Dundalk 0.069 Dunnville 0.127 Durham 0.065 Dutton 0.072 Earlton 0.108 Edison 0.039 Elliot Lake 0.054 Elmvale 0.074 Embro 0.072 Englehart 0.104 Espanola 0.063 Exeter 0.063 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.068 Goderich 0.059
Dundalk 0.069 Dunnville 0.127 Durham 0.065 Dutton 0.072 Earlton 0.108 Edison 0.039 Elliot Lake 0.054 Elmvale 0.074 Embro 0.072 Englehart 0.104 Espanola 0.063 Exeter 0.063 Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Dunnville 0.127 Durham 0.065 Dutton 0.072 Earlton 0.108 Edison 0.039 Elliot Lake 0.054 Elmvale 0.074 Embro 0.072 Englehart 0.104 Espanola 0.063 Exeter 0.063 Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Durham 0.065 Dutton 0.072 Earlton 0.108 Edison 0.039 Elliot Lake 0.054 Elmvale 0.074 Embro 0.072 Englehart 0.104 Espanola 0.063 Exeter 0.063 Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.068 Goderich 0.059
Dutton 0.072 Earlton 0.108 Edison 0.039 Elliot Lake 0.054 Elmvale 0.074 Embro 0.072 Englehart 0.104 Espanola 0.063 Exeter 0.063 Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Earlton 0.108 Edison 0.039 Elliot Lake 0.054 Elmvale 0.074 Embro 0.072 Englehart 0.104 Espanola 0.063 Exeter 0.063 Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Edison 0.039 Elliot Lake 0.054 Elmvale 0.074 Embro 0.072 Englehart 0.104 Espanola 0.063 Exeter 0.063 Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Elliot Lake 0.054 Elmvale 0.074 Embro 0.072 Englehart 0.104 Espanola 0.063 Exeter 0.063 Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Elmvale 0.074 Embro 0.072 Englehart 0.104 Espanola 0.063 Exeter 0.063 Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Embro 0.072 Englehart 0.104 Espanola 0.063 Exeter 0.063 Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Englehart 0.104 Espanola 0.063 Exeter 0.063 Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Espanola 0.063 Exeter 0.063 Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Exeter 0.063 Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Fenelon Falls 0.086 Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Fergus 0.075 Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Forest 0.061 Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Fort Erie 0.162 Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Fort Erie (Ridgeway) 0.160 Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Fort Frances 0.036 Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Gananoque 0.119 Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Geraldton 0.036 Glencoe 0.068 Goderich 0.059
Glencoe 0.068 Goderich 0.059
Goderich 0.059
Goro Boy
Gore Bay 0.055
Graham 0.040
Gravenhurst (Muskoka Airport) 0.082
Grimsby 0.158
Guelph 0.082
Guthrie 0.078
Haileybury 0.125
Haldimand (Caledonia) 0.119
Haldimand (Hagersville) 0.097
Haliburton 0.095
Halton Hills (Georgetown) 0.090
Hamilton 0.140
Hanover 0.063
Hastings 0.096
Hawkesbury 0.238
Hearst 0.048
Honey Harbour 0.076
Hornepayne 0.043
Huntsville 0.091
Ingersoll 0.073
Iroquois Falls 0.110
Jellicoe 0.035
Kapuskasing 0.064

Province and Location	S _{a,ICF}
Kemptville	0.209
Kenora	0.036
Killaloe	0.148
Kincardine	0.058
Kingston	0.110
Kinmount	0.089
Kirkland Lake	0.095
Kitchener	0.077
Lakefield	0.091
Lansdowne House	0.035
Leamington	0.070
Lindsay	0.087
Lion's Head	0.062
Listowel	0.066
London	0.070
Lucan	0.065
Maitland	0.159
Markdale	0.066
Markham	0.103
Martin	0.040
Matheson	0.091
Mattawa	0.215
Midland	0.075
Milton	0.107
Milverton	0.067
Minden	0.089
Mississauga	0.121
Mississauga (Lester B. Pearson Int'l Airport)	0.109
Mississauga (Port Credit)	0.134
Mitchell	0.065
Moosonee	0.051
Morrisburg	0.256
Mount Forest	0.067
Nakina	0.036
Nanticoke (Jarvis)	0.090
Nanticoke (Port Dover)	0.085
Napanee	0.106
New Liskeard	0.121
Newcastle	0.107
Newcastle (Bowmanville)	0.107
Newmarket	0.085
Niagara Falls	0.166
North Bay	0.141
Norwood	0.094
Oakville	0.140

 $S_{a,ICF} = max[^{2}/_{3} F(0.2)S_{a}(0.2), ^{2}/_{3} F(0.5)S_{a}(0.5), F(0.5) S_{a}(0.5)]I_{E}M_{\nu}/1.47$

Province and Location	S _{a,ICF}
Orangeville	0.076
Orillia	0.079
Oshawa	0.108
Ottawa (City Hall)	0.213
Ottawa (Barrhaven)	0.208
Ottawa (Kanata)	0.197
Ottawa (M-C Int'l Airport)	0.215
Ottawa (Orleans)	0.226
Owen Sound	0.064
Pagwa River	0.040
Paris	0.084
Parkhill	0.063
Parry Sound	0.079
Pelham (Fonthill)	0.162
Pembroke	0.189
Penetanguishene	0.074
Perth	0.140
Petawawa	0.189
Peterborough	0.092
Petrolia	0.062
Pickering (Dunbarton)	0.121
Picton	0.104
Plattsville	0.075
Point Alexander	0.193
Port Burwell	0.079
Port Colborne	0.157
Port Elgin	0.060
Port Hope	0.106
Port Perry	0.091
Port Stanley	0.075
Prescott	0.178
Princeton	0.079
Raith	0.038
Rayside-Balfour (Chelmsford)	0.072
Red Lake	0.038
Renfrew	0.179
Richmond Hill	0.095
Rockland	0.239
Sarnia	0.059
Sault Ste. Marie	0.044
Schreiber	0.035
Seaforth	0.062
Shelburne	0.072
	0.084
Simcoe	
Simcoe Sioux Lookout	0.041

Province and Location	e
Smithville	S _{a,ICF}
Smooth Rock Falls	0.130
South River	0.106
Southampton	0.060
St. Catharines	0.165
St. Mary's	0.103
St. Thomas	0.008
Stirling	0.100
Stratford	0.069
Strathroy	0.066
Sturgeon Falls	0.000
Sudbury	0.076
Sundridge	0.103
Tavistock	0.103
Temagami	0.071
Thamesford	0.133
Thedford	0.071
Thunder Bay	0.002
Tillsonburg	0.003
Timmins	0.077
Timmins (Porcupine)	0.073
Etobicoke	0.109
North York	0.110
Scarborough	0.121
Toronto (City Hall)	0.135
Trenton	0.105
Trout Creek	0.116
Uxbridge	0.089
Vaughan (Woodbridge)	0.096
Vittoria	0.083
Walkerton	0.062
Wallaceburg	0.064
Waterloo	0.075
Watford	0.064
Wawa	0.043
Welland	0.161
West Lorne	0.072
Whitby	0.114
Whitby (Brooklin)	0.102
White River	0.041
Wiarton	0.062
Windsor	0.063
Wingham	0.061
Woodstock	0.075
Wyoming	0.061
Quebec	
Acton-Vale	0.155

Province and Location	S _{a,ICF}
Alma	0.356
Amos	0.078
Asbestos	0.137
Aylmer	0.203
Baie-Comeau	0.207
Baie-Saint-Paul	0.735
Beauport	0.239
Bedford	0.185
Beloeil	0.244
Brome	0.149
Brossard	0.266
Buckingham	0.232
Campbell's Bay	0.192
Chambly	0.254
Coaticook	0.129
Contrecoeur	0.226
Cowansville	0.161
Deux-Montagnes	0.270
Dolbeau	0.230
Drummondville	0.160
Farnham	0.187
Fort-Coulonge	0.193
Gagnon	0.060
Gaspe	0.090
Gatineau	0.214
Gracefield	0.207
Granby	0.161
Harrington-Harbour	0.056
Havre-St-Pierre	0.127
Hemmingford	0.253
Hull	0.210
Iberville	0.243
Inukjuak	0.040
Joliette	0.219
Kuujjuaq	0.054
Kuujjuarapik	0.035
La Pocatiere	0.685
La-Malbaie	0.785
La-Tuque	0.137
Lac-Megantic	0.130
Lachute	0.242
Lennoxville	0.129
Lery	0.273
Loretteville	0.236
Louiseville	0.184
Magog	0.133
Malartic	0.092

Maniwaki 0.208 Masson 0.235 Matane 0.218 Mont-Joli 0.204 Mont-Laurier 0.204 Montragny 0.278 Montreal Region Beaconsfield 0.273 Beaconsfield 0.272 Laval 0.270 Montreal (City Hall) 0.270 Montreal-Est 0.266 Montreal-Nord 0.269 Outremont 0.271 Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.271 Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region Ancienne-Lorette 0.231 Levis 0.23	Province and Location	S _{a,ICF}
Matane 0.218 Mont-Joli 0.208 Mont-Laurier 0.204 Montmagny 0.278 Montreal Region Beaconsfield 0.273 Dorval 0.272 Laval 0.270 Montreal (City Hall) 0.270 Montreal-Est 0.266 Montreal-Nord 0.269 Outremont 0.271 Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.273 Verdun 0.273 Verdun 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region Ancienne-Lorette 0.231 Levis 0.233 Sillery 0.230	Maniwaki	
Mont-Joli 0.208 Mont-Laurier 0.204 Montmagny 0.278 Montreal Region 0.272 Beaconsfield 0.272 Laval 0.270 Montreal (City Hall) 0.270 Montreal-Est 0.266 Montreal-Nord 0.269 Outremont 0.271 Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.271 Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region Ancienne-Lorette 0.231 Levis 0.233 Guebec 0.233 Sillery 0.230 Ste-Foy 0.231	Masson	0.235
Mont-Laurier 0.204 Montmagny 0.278 Montreal Region 0.273 Beaconsfield 0.272 Laval 0.270 Montreal (City Hall) 0.270 Montreal-Est 0.266 Montreal-Nord 0.269 Outremont 0.271 Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.273 Verdun 0.273 Verdun 0.273 Verdun 0.270 Nitchequon 0.047 Noranda 0.084 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region Ancienne-Lorette 0.231 Levis 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski	Matane	0.218
Montreal Region Beaconsfield 0.273 Dorval 0.272 Laval 0.270 Montreal (City Hall) 0.270 Montreal-Est 0.266 Montreal-Nord 0.269 Outremont 0.271 Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.271 Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Ancienne-Lorette 0.231 Levis 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200	Mont-Joli	0.208
Montreal Region	Mont-Laurier	0.204
Beaconsfield 0.273 Dorval 0.272 Laval 0.270 Montreal (City Hall) 0.270 Montreal-Est 0.266 Montreal-Nord 0.269 Outremont 0.271 Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.273 Verdun 0.273 Verdun 0.273 Verdun 0.273 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Ancienne-Lorette 0.231 Levis 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Rob	Montmagny	0.278
Dorval 0.272 Laval 0.270 Montreal (City Hall) 0.270 Montreal-Est 0.266 Montreal-Nord 0.269 Outremont 0.271 Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.271 Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Levis 0.233 Quebec O.233 Sillery Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133	Montreal Region	
Laval 0.270 Montreal (City Hall) 0.270 Montreal-Est 0.266 Montreal-Nord 0.269 Outremont 0.271 Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.271 Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Levis 0.233 Quebec O.233 O.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.363	Beaconsfield	0.273
Montreal (City Hall) 0.270 Montreal-Est 0.266 Montreal-Nord 0.269 Outremont 0.271 Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.271 Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Ancienne-Lorette 0.231 Levis 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268	Dorval	0.272
Montreal-Est 0.266 Montreal-Nord 0.269 Outremont 0.271 Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.271 Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Levis 0.233 Quebec O.233 O.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Richmond 0.140 Rimouski 0.200 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay (Bagotville) 0.362 <	Laval	0.270
Montreal-Nord 0.269 Outremont 0.271 Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.271 Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.084 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Levis 0.233 Quebec O.233 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Richmond 0.140 Rimouski 0.200 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay (Bagotville) 0.362 Saguenay (Kenogami) 0.362 <td>Montreal (City Hall)</td> <td>0.270</td>	Montreal (City Hall)	0.270
Outremont 0.271 Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.271 Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Ancienne-Lorette 0.231 Levis 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay (Bagotville) 0.362 Saguenay (Kenogami) 0.362	Montreal-Est	0.266
Pierrefonds 0.272 St-Lambert 0.268 St-Laurent 0.271 Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Levis 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0	Montreal-Nord	0.269
St-Lambert 0.268 St-Laurent 0.271 Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region Ancienne-Lorette 0.231 Levis 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay (Bagotville) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Outremont	0.271
St-Laurent 0.271 Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Levis 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Pierrefonds	0.272
Ste-Anne-de-Bellevue 0.273 Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.084 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Levis 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	St-Lambert	0.268
Verdun 0.270 Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Ancienne-Lorette 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	St-Laurent	0.271
Nicolet (Gentilly) 0.183 Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Ancienne-Lorette 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Ste-Anne-de-Bellevue	0.273
Nitchequon 0.047 Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Ancienne-Lorette 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Verdun	0.270
Noranda 0.088 Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Ancienne-Lorette 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Nicolet (Gentilly)	0.183
Perce 0.084 Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Ancienne-Lorette 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Nitchequon	0.047
Pincourt 0.273 Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Levis 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Noranda	0.088
Plessisville 0.155 Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Levis 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Perce	0.084
Port-Cartier 0.167 Puvirnituq 0.061 Quebec City Region 0.231 Ancienne-Lorette 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Pincourt	0.273
Puvirnituq 0.061 Quebec City Region Ancienne-Lorette 0.231 Levis 0.233 Quebec 0.230 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Plessisville	0.155
Quebec City Region Ancienne-Lorette 0.231 Levis 0.233 Quebec 0.230 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Port-Cartier	0.167
Ancienne-Lorette 0.231 Levis 0.233 Quebec 0.230 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.233	Puvirnituq	0.061
Levis 0.233 Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Quebec City Region	
Quebec 0.233 Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Ancienne-Lorette	0.231
Sillery 0.230 Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Levis A	0.233
Ste-Foy 0.231 Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Quebec	0.233
Richmond 0.140 Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Sillery -	0.230
Rimouski 0.200 Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Ste-Foy	0.231
Riviere-du-Loup 0.526 Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Richmond	0.140
Roberval 0.312 Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Rimouski	0.200
Rock-Island 0.133 Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.133	Riviere-du-Loup	0.526
Rosemere 0.268 Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Roberval	0.312
Rouyn 0.089 Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Rock-Island	0.133
Saguenay 0.359 Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Rosemere	0.268
Saguenay (Bagotville) 0.363 Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Rouyn	0.089
Saguenay (Jonquiere) 0.362 Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Saguenay	0.359
Saguenay (Kenogami) 0.362 Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Saguenay (Bagotville)	0.363
Saint-Eustache 0.269 Saint-Jean-sur-Richelieu 0.244	Saguenay (Jonquiere)	0.362
Saint-Jean-sur- Richelieu 0.244	Saguenay (Kenogami)	0.362
Richelieu 0.244	Saint-Eustache	0.269
Salaberry-de-Valleyfield 0.273	Saint-Jean-sur- Richelieu	0.244
	Salaberry-de-Valleyfield	0.273

 $\mathbf{S_{a,ICF}} = \text{max}[^2/_3 \; \text{F(0.2)} \\ \mathbf{S_a(0.2)}, \; ^2/_3 \; \text{F(0.5)} \\ \mathbf{S_a(0.5)}, \; \text{F(0.5)} \; \mathbf{S_a(0.5)} \\ \mathbf{I_EM_v}/1.47$

Province and Location	S _{a,ICF}
Schefferville	0.042
Senneterre	0.083
Sept-Iles	0.155
Shawinigan	0.167
Shawville	0.191
Sherbrooke	0.129
Sorel	0.200
St-Felicien	0.232
St-Georges-de- Cacouna	0.389
St-Hubert	0.264
Saint-Hubert-de- Riviere-du-Loup	0.239
St-Hyacinthe	0.187
St-JerOme	0.250
St-Jovite	0.207
Quebec	
St-Lazare-Hudson	0.271
St-Nicolas	0.223
Ste-Agathe-des-Monts	0.209
Sutton	0.150
Tadoussac	0.318
Temiscaming	0.372
Terrebonne	0.265
Thetford Mines	0.142
Thurso	0.232
Trois-Rivieres	0.184
Val-d'Or	0.093
Varennes	0.261
Vercheres	0.249
Victoriaville	0.149
Ville-Marie	0.142
Wakefield	0.201
Waterloo	0.147
Windsor	0.134
New Brunswick	
Alma	0.096
Bathurst	0.125
Campbellton	0.132
Edmundston	0.150
Fredericton	0.126
Gagetown	0.119
Grand Falls	0.148
Miramichi	0.124
Moncton	0.100
Oromocto	0.125
Sackville	0.093

Province and Location	S _{a,ICF}
Saint Andrews	0.396
Saint George	0.264
Saint John	0.121
Shippagan	0.096
St. Stephen	0.354
Woodstock	0.128
Nova Scotia	L
Amherst	0.089
Antigonish	0.076
Bridgewater	0.086
Canso	0.085
Debert	0.080
Digby	0.105
Greenwood (CFB)	0.090
Dartmouth	0.082
Halifax	0.082
Kentville	0.087
Liverpool	0.086
Lockeport	0.087
Louisburg	0.089
Lunenburg	0.085
New Glasgow	0.077
North Sydney	0.081
Pictou	0.076
Port Hawkesbury	0.079
Springhill	0.085
Stewiacke	0.081
Sydney	0.083
Tatamagouche	0.079
Truro	0.080
Wolfville	0.086
Yarmouth	0.094
Prince Edward Island	
Charlottetown	0.077
Souris	0.073
Summerside	0.089
Tignish	0.090
Newfoundland	
Argentia	0.079
Bonavista	0.067
Buchans	0.064
Cape Harrison	0.087
Cape Race	0.085
Channel-Port aux Basques	0.071
Corner Brook	0.062
Gander	0.064

Province and Location	S _{a,ICF}
Grand Bank	0.090
Grand Falls	0.064
Happy Valley - Goose Bay	0.050
Labrador City	0.052
St. Anthony	0.057
St. John's	0.073
Stephenville	0.064
Twin Falls	0.047
Wabana	0.072
Wabush	0.052

Appendix B: Climatic Design Data

			Des	sign Te	mpera	ture	De-		One			l .	Driv-	Snow			/ Wind
		Elev.,	Janı	uary	July :	2.5%	gree-	15 Min.	Day	Ann.	Moist.	Ann. Tot.	ing Rain Wind	kPa,	1/50	Pressui	res, kPa
	Province and Location	m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Rain, mm	Rain, 1/50, mm	Rain, mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
Br	itish Columbia																
	100 Mile House	1040	-30	-32	29	17	5030	10	48	300	0.44	425	60	2.6	0.3	0.27	0.35
	Abbotsford	70	-8	-10	29	20	2860	12	112	1525	1.59	1600	160	2.0	0.3	0.34	0.44
	Agassiz	15	-9	-11	31	21	2750	8	128	1650	1.71	1700	160	2.4	0.7	0.36	0.47
	Alberni	12	- 5	-8	31	19	3100	10	144	1900	2.00	2000	220	2.6	0.4	0.25	0.32
	Ashcroft	305	-24	-27	34	20	3700	10	37	250	0.25	300	80	1.7	0.1	0.29	0.38
	Bamfield	20	- 2	-4	23	17	3080	13	170	2870	2.96	2890	280	1.0	0.4	0.39	0.50
	Beatton River	840	-37	-39	26	18	6300	15	64	330	0.53	450	80	3.3	0.1	0.23	0.30
	Bella Bella	25	- 5	-7	23	18	3180	13	145	2715	2.82	2800	350	2.6	0.8	0.39	0.50
	Bella Coola	40	-14	-18	27	19	3560	10	140	1500	1.85	1700	350	4.5	0.8	0.30	0.39
	Burns Lake	755	-31	-34	26	17	5450	12	54	300	0.56	450	100	3.4	0.2	0.30	0.39
	Cache Creek	455	-24	-27	34	20	3700	10	37	250	0.25	300	80	1.7	0.2	0.30	0.39
	Campbell River	20	- 5	-7	26	18	3000	10	116	1500	1.59	1600	260	2.8	0.4	0.40	0.52
	Carmi	845	-24	-26	31	19	4750	10	64	325	0.38	550	60	3.6	0.2	0.29	0.38
	Castlegar	430	-18	-20	32	20	3580	10	54	560	0.64	700	60	4.2	0.1	0.27	0.34
	Chetwynd	605	-35	-38	27	18	5500	15	70	400	0.58	625	60	2.4	0.2	0.31	0.40
	Chilliwack	10	-9	-11	30	20	2780	8	139	1625	1.68	1700	160	2.2	0.3	0.36	0.47
	Comox	15	- 7	-9	27	18	3100	10	106	1175	1.28	1200	260	2.4	0.4	0.40	0.52
	Courtenay	10	- 7	-9	28	18	3100	10	106	1400	1.49	1450	260	2.4	0.4	0.40	0.52
	Cranbrook	910	-26	-28	32	18	4400	12	59	275	0.30	400	100	3.0	0.2	0.25	0.33
	Crescent Valley	585	-18	- 20	31	20	3650	10	54	675	0.75	850	80	4.2	0.1	0.25	0.33
	Crofton	5	-4	-6	28	19	2880	8	86	925	1.06	950	160	1.8	0.2	0.31	0.40
	Dawson Creek	665	-38	-40	27	18	5900	18	75	325	0.49	475	100	2.5	0.2	0.31	0.40
	Dease Lake	800	-37	-40	24	15	6730	10	45	265	0.55	425	380	2.8	0.1	0.23	0.30
	Dog Creek	450	-28	-30	29	17	4800	10	48	275	0.41	375	100	1.8	0.2	0.27	0.35
	Duncan	10	-6	-8	28	19	2980	8	103	1000	1.13	1050	180	1.8	0.4	0.30	0.39
	Elko	1065	-28	-31	30	19	4600	13	64	440	0.48	650	100	3.6	0.2	0.31	0.40
	Fernie	1010	-27	-30	30	19	4750	13	118	860	0.88	1175	100	4.5	0.2	0.31	0.40
	Fort Nelson	465	-39	-42	28	18	6710	15	70	325	0.56	450	80	2.4	0.1	0.23	0.30
	Fort St. John	685	-35	-37	26	18	5750	15	72	320	0.50	475	100	2.8	0.1	0.30	0.39
	Glacier	1145	-27	-30	27	17	5800	10	70	625	0.83	1500	80	9.4	0.2	0.25	0.32
	Gold River	120	-8	-11	31	18	3230	13	200	2730	2.80	2850	250	2.8	0.6	0.25	0.32
	Golden	790	-27	-30	30	17	4750	10	55	325	0.57	500	100	3.7	0.2	0.27	0.35
	Grand Forks	565	-19	-22	34	20	3820	10	48	390	0.47	475	80	2.8	0.1	0.31	0.40
	Greenwood	745	-20	-23	34	20	4100	10	64	430	0.51	550	80	3.6	0.1	0.31	0.40
	Hope	40	-13	-15	31	20	3000	8	139	1825	1.88	1900	140	2.8	0.7	0.48	0.63
	Jordan River	20	-1	-3	22	17	2900	12	170	2300	2.37	2370	250	1.2	0.4	0.43	0.55
	Kamloops	355	-23	-25	34	20	3450	13	42	225	0.23	275	80	1.8	0.2	0.31	0.40
	Kaslo	545	-17	-20	30	19	3830	10	55	660	0.82	850	80	2.8	0.1	0.24	0.31

Council, National R. National Building Code 2015. National Research Council.

The ICFMA Prescriptive ICF Design for Part 9 Structures in Canada Version 2021-1 ©2021 All Rights Reserved.

9	
0	
0	C
5	
5 2 2	NI
2	
2 2	
2	U
2	
1	
_	

	Elev.,	Des	ign Te uary		ture 2.5%	De- gree-	15 Min.	One Day	Ann.	Moist.	Ann. Tot.	Driv- ing Rain Wind	Snow kPa,	,	Hourly Pressur	
Province and Location	m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Rain, mm	Rain, 1/50, mm	Rain, mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
Kelowna	350	-17	-20	33	20	3400	12	43	260	0.29	325	80	1.7	0.1	0.31	0.40
Kimberley	1090	-25	-27	31	18	4650	12	59	350	0.38	500	100	3.0	0.2	0.25	0.33
Kitimat Plant	15	-16	-18	25	16	3750	13	193	2100	2.19	2500	220	5.5	0.8	0.37	0.48
Kitimat Townsite	130	-16	-18	24	16	3900	13	171	1900	2.00	2300	220	6.5	8.0	0.37	0.48
Ladysmith	80	- 7	-9	27	19	3000	8	97	1075	1.20	1160	180	2.4	0.4	0.31	0.40
Langford	80	-4	-6	27	19	2750	9	135	1095	1.22	1125	220	1.8	0.3	0.31	0.40
Lillooet	245	-21	-23	34	20	3400	10	70	300	0.31	350	100	2.1	0.1	0.34	0.44
Lytton	325	-17	-20	35	20	3300	10	70	330	0.33	425	80	2.8	0.3	0.33	0.43
Mackenzie	765	-34	-38	27	17	5550	10	50	350	0.54	650	60	5.1	0.2	0.25	0.32
Masset	10	-5	-7	17	15	3700	13	80	1350	1.54	1400	400	1.8	0.4	0.48	0.61
McBride	730	-29	-32	29	18	4980	13	54	475	0.64	650	60	4.3	0.2	0.27	0.35
McLeod Lake	695	-35	-37	27	17	5450	10	50	350	0.54	650	60	4.1	0.2	0.25	0.32
Merritt	570	-24	-27	34	20	3900	8	54	240	0.24	310	80	1.8	0.3	0.34	0.44
Mission City	45	- 9	-11	30	20	2850	13	123	1650	1.71	1700	160	2.4	0.3	0.33	0.43
Montrose	615	-16	-18	32	20	3600	10	54	480	0.56	700	60	4.1	0.1	0.27	0.35
Nakusp	445	-20	-22	31	20	3560	10	60	650	0.78	850	60	4.4	0.1	0.25	0.33
Nanaimo	15	-6	-8	27	19	3000	10	91	1000	1.13	1050	200	2.1	0.4	0.39	0.50
Nelson	600	-18	-20	31	20	3500	10	59	460	0.57	700	60	4.2	0.1	0.25	0.33
Ocean Falls	10	-10	-12	23	17	3400	13	260	4150	4.21	4300	350	3.9	8.0	0.46	0.59
Osoyoos	285	-14	-17	35	21	3100	10	48	275	0.28	310	60	1.1	0.1	0.31	0.40
Parksville	40	-6	-8	26	19	3200	10	91	1200	1.31	1250	200	2.0	0.4	0.39	0.50
Penticton	350	-15	-17	33	20	3350	10	48	275	0.28	300	60	1.3	0.1	0.35	0.45
Port Alberni	15	- 5	-8	31	19	3100	10	161	1900	2.00	2000	240	2.6	0.4	0.25	0.32
Port Alice	25	-3	-6	26	17	3010	13	200	3300	3.38	3340	220	1.1	0.4	0.25	0.32
Port Hardy	5	- 5	-7	20	16	3440	13	150	1775	1.92	1850	220	0.9	0.4	0.40	0.52
Port McNeill	5	-5	-7	22	17	3410	13	128	1750	1.89	1850	260	1.1	0.4	0.40	0.52
Port Renfrew	20	-3	-5	24	17	2900	13	200	3600	3.64	3675	270	1.1	0.4	0.40	0.52
Powell River	10	-7	- 9	26	18	3100	10	80	1150	1.27	1200	220	1.7	0.4	0.39	0.51
Prince George	580	-32	-36	28	18	4720	15	54	425	0.58	600	80	3.4	0.2	0.29	0.37
Prince Rupert	20	-13	-15	19	15	3900	13	160	2750	2.84	2900	240	1.9	0.4	0.42	0.54
Princeton	655	-24	-29	33	19	4250	10	43	235	0.35	350	80	2.9	0.6	0.28	0.36
Qualicum Beach	10	-7	-9	27	19	3200	10	96	1200	1.31	1250	200	2.0	0.4	0.41	0.53
Queen Charlotte City	35	-6	-8	21	16	3520	13	110	1300	1.47	1350	360	1.8	0.4	0.48	0.61
Quesnel	475	-31	-33	30	17	4650	10	50	380	0.51	525	80	3.0	0.1	0.24	0.31
Revelstoke	440	-20	-23	31	19	4000	13	55	625	0.80	950	80	7.2	0.1	0.25	0.32
Salmon Arm	425	-19	-24	33	21	3650	13	48	400	0.47	525	80	3.5	0.1	0.30	0.39
Sandspit	5	-4	6	18	15	3450	13	86	1300	1.47	1350	500	1.8	0.4	0.60	0.78
Sechelt	25	-6	-8	27	20	2680	10	75	1140	1.27	1200	160	1.8	0.4	0.37	0.48
Sidney	10	-4	-6	26	18	2850	8	96	825	0.97	850	160	1.1	0.2	0.33	0.42
Smith River	660	45	-47	26	17	7100	10	64	300	0.58	500	40	2.8	0.1	0.23	0.30
Council, National R. National Building			<u> </u>		· · ·	1	ı .v	_ <u> </u>	1 200	3.00	1 300	ı ' <u>'</u>		J.,	1 3.20	0,00

5
N
G

	ŀ			mpera		De-	15	One			Ann.	Driv- ing Rain	Snow kPa,		Hourly Pressur	
Province and Location	Elev.,	Janu	ıary	July :	2.5% I	gree- Days	Min.	Day Rain,	Ann. Rain,	Moist	Tot.	Wind	κra,	1/30 T	FIESSUI	65, KF a
Trovince and Essation	m	2.5% °C	1% °C	Dry °C	Wet °C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
Smithers	500	-29	-31	26	17	5040	13	60	325	0.60	500	120	3.5	0.2	0.31	0.40
Sooke	20	-1	- 3	21	16	2900	9	130	1250	1.37	1280	220	1.3	0.3	0.37	0.48
Squamish	5	- 9	-11	29	20	2950	10	140	2050	2.12	2200	160	2.8	0.7	0.39	0.50
Stewart	10	-17	- 20	25	16	4350	13	135	1300	1.47	1900	180	7.9	0.8	0.28	0.36
Tahsis	25	-4	-6	26	18	3150	13	200	3845	3.91	3900	300	1.1	0.4	0.26	0.34
Taylor	515	-35	-37	26	18	5720	15	72	320	0.49	450	100	2.3	0.1	0.31	0.40
Terrace	60	-19	-21	27	17	4150	13	120	950	1.08	1150	200	5.4	0.6	0.28	0.36
Tofino	10	- 2	- 4	20	16	3150	13	193	3275	3.36	3300	300	1.1	0.4	0.53	0.68
Trail	440	-14	-17	33	20	3600	10	54	580	0.65	700	60	4.1	0.1	0.27	0.35
Ucluelet	5	-2	-4	18	16	3120	13	180	3175	3.26	3200	280	1.0	0.4	0.53	0.68
Vancouver Region																
Burnaby (Simon Fraser Univ.)	330	- 7	- 9	25	17	3100	10	150	1850	1.93	1950	160	2.9	0.7	0.36	0.47
Cloverdale	10	-8	-10	29	20	2700	10	112	1350	1.44	1400	160	2.5	0.2	0.34	0.44
Haney	10	-9	-11	30	20	2840	10	134	1800	1.86	1950	160	2.4	0.2	0.34	0.44
Ladner	3	-6	-8	27	19	2600	10	80	1000	1.14	1050	160	1.3	0.2	0.36	0.46
Langley	15	-8	-10	29	20	2700	10	112	1450	1.53	1500	160	2.4	0.2	0.34	0.44
New Westminster	10	-8	-10	29	19	2800	10	134	1500	1.59	1575	160	2.3	0.2	0.34	0.44
North Vancouver	135	- 7	- 9	26	19	2910	12	150	2000	2.07	2100	160	3.0	0.3	0.35	0.45
Richmond	5	-7	- 9	27	19	2800	10	86	1070	1.20	1100	160	1.5	0.2	0.35	0.45
Surrey (88 Ave & 156 St.)	90	- 8	-10	29	20	2750	10	128	1500	1.58	1575	160	2.4	0.3	0.34	0.44
Vancouver (City Hall)	40	-7	- 9	28	20	2825	10	112	1325	1.44	1400	160	1.8	0.2	0.35	0.45
Vancouver (Granville & 41 Ave)	120	- 6	- 8	28	20	2925	10	107	1325	1.44	1400	160	1.9	0.3	0.35	0.45
West Vancouver	45	- 7	- 9	28	19	2950	12	150	1600	1.69	1700	160	2.4	0.2	0.37	0.48
Vernon	405	-20	-23	33	20	3600	13	43	350	0.41	400	80	2.2	0.1	0.31	0.40
Victoria Region																
Victoria (Gonzales Hts)	65	-4	- 6	24	17	2700	9	91	600	0.82	625	220	1.5	0.3	0.44	0.57
Victoria (Mt Tolmie)	125	- 6	-8	24	16	2700	9	91	775	0.96	800	220	2.1	0.3	0.48	0.63
Victoria	10	- 4	- 6	24	17	2650	8	91	800	0.98	825	220	1.1	0.2	0.44	0.57
Whistler	665	-17	-20	30	20	4180	10	85	845	0.99	1215	160	9.5	0.9	0.25	0.32
White Rock	30	- 5	- 7	25	20	2620	10	80	1065	1.17	1100	160	2.0	0.2	0.34	0.44
Williams Lake	615	-30	-33	29	17	4400	10	48	350	0.47	425	80	2.4	0.2	0.27	0.35
Youbou	200	- 5	- 8	31	19	3050	10	161	2000	2.09	2100	200	3.5	0.7	0.25	0.32
Alberta																
Athabasca	515	-35	-38	27	19	6000	18	86	370	0.58	480	80	1.5	0.1	0.28	0.36
Banff 1	1400	-31	-33	27	16	5500	18	65	300	0.58	500	120	3.3	0.1	0.25	0.32
Barrhead	645	-33	-36	27	19	5740	20	86	375	0.58	475	100	1.7	0.1	0.34	0.44

	Camrose	740	-33	-35	29	19	5500	20	86	355	0.54	470	160	2.0	0.1	0.30	0.39	
	Canmore	1320	-31	-33	28	17	5400	18	86	325	0.57	500	120	3.2	0.1	0.29	0.37	
	Cardston	1130	-29	-32	30	19	4700	20	108	340	0.38	550	140	1.5	0.1	0.56	0.72	
	Claresholm	1030	-30	- 32	30	18	4680	15	97	310	0.35	440	200	1.3	0.1	0.45	0.58	
	Cold Lake	540	-35	-38	28	19	5860	18	81	320	0.53	430	140	1.7	0.1	0.29	0.38	
	Coleman	1320	-31	-34	29	18	5210	15	86	400	0.46	550	120	2.7	0.3	0.48	0.63	
	Coronation	790	-32	-34	30	19	5640	20	92	300	0.45	400	200	1.9	0.1	0.29	0.37	
	Cowley	1175	-29	-32	29	18	4810	15	92	310	0.36	525	140	1.6	0.1	0.78	1.01	
	Drumheller	685	-32	-34	30	18	5050	20	86	300	0.39	375	220	1.2	0.1	0.34	0.44	
	Edmonton	645	-30	-33	28	19	5120	23	97	360	0.48	460	160	1.7	0.1	0.35	0.45	
	Edson	920	-34	- 37	27	18	5750	18	81	450	0.63	570	100	2.1	0.1	0.36	0.46	
	Embarras Portage	220	-41	- 43	28	19	7100	12	81	250	0.56	390	80	2.2	0.1	0.29	0.37	
	Fairview	670	-37	-40	27	18	5840	15	86	330	0.51	450	100	2.4	0.1	0.27	0.35	
	Fort MacLeod	945	-30	-32	31	19	4600	16	97	300	0.35	425	180	1.2	0.1	0.53	0.68	
	Fort McMurray	255	-38	- 40	28	19	6250	13	86	340	0.52	460	60	1.5	0.1	0.27	0.35	
	Fort Saskatchewan	610	-32	-35	28	19	5420	20	86	350	0.49	425	140	1.6	0.1	0.33	0.43	
R	Fort Vermilion	270	-41	- 43	28	18	6700	13	70	250	0.53	380	60	2.1	0.1	0.23	0.30	
	Grande Prairie	650	-36	-39	27	18	5790	20	86	315	0.49	450	120	2.2	0.1	0.33	0.43	
	Habay	335	-41	-43	28	18	6750	13	70	275	0.54	425	60	2.4	0.1	0.23	0.30	
	Hardisty	615	-33	-36	30	19	5640	20	81	325	0.48	425	140	1.7	0.1	0.28	0.36	
	High River	1040	-31	-32	28	17	4900	18	97	300	0.36	425	200	1.3	0.1	0.50	0.65	b
	Hinton	990	-34	-38	27	17	5500	13	81	375	0.55	500	100	2.6	0.1	0.36	0.46	1
	Jasper	1060	-31	-34	28	17	5300	12	76	300	0.52	400	80	3.0	0.1	0.25	0.32	
	Keg River	420	- 40	- 42	28	18	6520	13	70	310	0.54	450	80	2.4	0.1	0.23	0.30	
	Lac la Biche	560	-35	-38	28	19	6100	15	86	375	0.58	475	80	1.6	0.1	0.28	0.36	
	Lacombe	855	-33	-36	28	19	5500	23	92	350	0.53	450	180	1.9	0.1	0.31	0.40	
	Lethbridge	910	-30	- 32	31	19	4500	20	97	250	0.26	390	200	1.2	0.1	0.51	0.66	
	Manning	465	-39	-41	27	18	6300	13	76	280	0.49	390	80	2.3	0.1	0.23	0.30	
	Medicine Hat	705	-31	-34	32	19	4540	23	92	250	0.25	325	220	1.1	0.1	0.37	0.48	
	Peace River	330	- 37	- 40	27	18	6050	15	81	300	0.50	390	100	2.2	0.1	0.25	0.32	

One

Day

Rain,

1/50.

mm

86

86

103

86

Ann.

Rain,

mm

315

260

325

375

Moist.

Index

0.49

0.26

0.37

0.58

15

Min.

Rain,

mm

20

18

23

20

De-

gree-

Days

Below

18°C

5700

4880

5000

5750

Driv-

ing Rain

Wind

Pres-

sures,

Pa, 1/5

100

220

220

100

Ann.

Tot.

Ppn.,

mm

470

340

425

475

Snow Load.

kPa, 1/50

Ss

2.4

1.2

1.1

1.7

Sr

0.1

0.1

0.1

0.1

Hourly Wind

Pressures, kPa

1/50

0.36

0.52

0.48

0.44

1/10

0.28

0.40

0.37

0.34

Design Temperature

July 2.5%

Wet

°C

18

20

17

19

Dry

28

32

28

January

°C | °C

-39

-34

-32

-36 27

2.5%

 $^{\circ}\text{C}$

-36

-32

-30

-33

Elev.,

m

730

760

1045

660

Province and Location

Beaverlodge

Brooks Calgary

Campsie

Council, National R. National Building Code 2015. National Research Council.

1130

670

855

985

590

820

-29

-34

-32

-32

-35

-32

-32 | 29

-37

-35

-34

-38

-34

29

28

27

26

30

18

19

19

18

19

19

4740

5700

5550

5640

5850

5300

Pincher Creek

Rocky Mountain House

Ranfurly

Red Deer

Slave Lake

Stettler

16

18

20

20

15

20

103

92

97

92

81

97

325

325

375

425

380

370

0.37

0.50

0.54

0.59

0.62

0.53

575

420

475

550

500

450

140

100

200

120

80

200

1.5

1.9

1.8

1.9

1.9

1.9

0.1

0.1

0.1

0.1

0.1

0.1

0.75

0.28

0.31

0.28

0.29

0.28

0.96

0.36

0.40

0.36

0.37

0.36

,	C
)	
i	NI
)	V
;	
)	Ü

		Des	ign Te	mpera	ture	De-	15	One			Ann	Driv- ing Rain	Snow	,	Hourly	
Province and Location	Elev.,	Janı	uary	July	2.5%	gree- Days	Min.	Day Rain,	Ann. Rain,	Moist.	Ann. Tot	Wind	kPa,	1/50	Pressur	es, kPa
Province and Location	m	2.5% °C	1% °C	Dry °C	Wet °C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
Stony Plain	710	-32	-35	28	19	5300	23	97	410	0.52	540	120	1.7	0.1	0.35	0.45
Suffield	755	-31	-34	32	20	4770	20	86	230	0.23	325	220	1.3	0.1	0.38	0.49
Taber	815	-31	-33	31	19	4580	20	92	260	0.26	370	200	1.2	0.1	0.48	0.63
Turner Valley	1215	-31	-32	28	17	5220	20	97	350	0.48	600	180	1.4	0.1	0.50	0.65
Valleyview	700	-37	-40	27	18	5600	18	86	360	0.54	490	80	2.3	0.1	0.33	0.42
Vegreville	635	-34	-37	29	19	5780	18	86	325	0.50	410	100	1.9	0.1	0.28	0.36
Vermilion	580	-35	-38	29	19	5740	18	86	310	0.53	410	100	1.7	0.1	0.28	0.36
Wagner	585	-35	-38	26	19	5850	15	81	380	0.62	500	80	1.9	0.1	0.29	0.37
Wainwright	675	-33	-36	29	19	5700	20	81	310	0.47	425	120	2.0	0.1	0.28	0.36
Wetaskiwin	760	-33	-35	29	19	5500	23	86	400	0.57	500	160	2.0	0.1	0.30	0.39
Whitecourt	690	-33	-36	27	19	5650	20	97	440	0.63	550	80	1.9	0.1	0.29	0.37
Wimborne	975	-31	-34	29	18	5310	23	92	325	0.48	450	200	1.6	0.1	0.31	0.40
Saskatchewan																
Assiniboia	740	-32	-34	31	21	5180	25	81	290	0.33	375	240	1.6	0.1	0.38	0.49
Battrum	700	-32	-34	32	20	5080	23	81	270	0.35	350	260	1.2	0.1	0.42	0.54
Biggar	645	-34	-36	30	20	5720	23	81	270	0.39	350	180	2.1	0.1	0.35	0.45
Broadview	600	-34	-35	30	21	5760	25	103	320	0.49	420	160	1.7	0.1	0.36	0.46
Dafoe	530	-35	-37	29	21	5860	20	92	300	0.46	380	140	1.7	0.1	0.29	0.37
Dundurn	525	-35	-37	30	21	5600	23	86	275	0.40	380	180	1.5	0.1	0.36	0.46
Estevan	565	-32	-34	32	22	5340	28	92	330	0.43	420	200	1.6	0.1	0.40	0.52
Hudson Bay	370	-36	-38	29	21	6280	20	81	340	0.59	450	80	2.0	0.1	0.29	0.37
Humboldt	565	-36	-38	28	21	6000	20	86	320	0.48	375	140	2.1	0.1	0.30	0.39
Island Falls	305	-39	-41	27	20	7100	18	76	370	0.62	510	80	2.1	0.1	0.27	0.35
Kamsack	455	-34	-37	29	22	6040	20	97	360	0.55	450	120	2.1	0.2	0.31	0.40
Kindersley	685	-33	-35	31	20	5550	23	81	260	0.38	325	200	1.4	0.1	0.36	0.46
Lloydminster	645	-34	-37	28	20	5880	18	81	310	0.53	430	120	2.0	0.1	0.31	0.40
Maple Creek	765	-31	-34	31	20	4780	25	81	275	0.28	380	220	1.2	0.1	0.35	0.45
Meadow Lake	480	-38	-40	28	20	6280	18	81	320	0.53	450	120	1.7	0.1	0.31	0.40
Melfort	455	-36	-38	28	21	6050	20	81	310	0.50	410	120	2.1	0.1	0.28	0.36
Melville	550	-34	-36	29	21	5880	23	97	340	0.52	410	160	1.7	0.1	0.31	0.40
Moose Jaw	545	-32	-34	31	21	5270	25	86	270	0.33	360	200	1.4	0.1	0.40	0.52
Nipawin	365	-37	-39	28	21	6300	20	76	340	0.56	450	100	2.0	0.1	0.29	0.38
North Battleford	545	-34	-36	29	20	5900	20	81	280	0.46	370	120	1.7	0.1	0.36	0.46
Prince Albert	435	-37	-40	28	21	6100	20	81	320	0.51	410	140	1.9	0.1	0.29	0.38
Qu'Appelle	645	-34	36	30	22	5620	25	97	340	0.45	430	160	1.7	0.1	0.33	0.42
Regina	575	-34	-36	31	21	5600	28	103	300	0.39	365	200	1.4	0.1	0.38	0.49
Rosetown	595	-34	-36	31	20	5620	23	81	260	0.37	330	200	1.7	0.1	0.38	0.49
Saskatoon	500	-35	-37	30	21	5700	23	86	265	0.41	350	160	1.7	0.1	0.33	0.43
Scott	645	-34	-36	30	20	5960	20	81	270	0.41	360	140	1.9	0.1	0.35	0.45
Strasbourg	545	-34	-36	30	22	5600	25	92	300	0.41	390	180	1.5	0.1	0.33	0.43
Council National B National Building Co			l		22	1 5000	20	32	500	U. + 1	030	100	1.0	0.1	0.00	0.42

													,					
	Swift Current	750	-31	-34	31	20	5150	25	81	260	0.34	350	240	1.4	0.1	0.42	0.54	
	Uranium City	265	-42	-44	26	19	7500	12	54	300	0.59	360	100	2.0	0.1	0.28	0.36	
	Weyburn	575	-33	-35	31	23	5400	28	97	320	0.40	400	200	1.8	0.1	0.37	0.48	
	Yorkton	510	-34	-37	29	21	6000	23	97	350	0.54	440	140	1.9	0.1	0.31	0.40	
	Manitoba																	
	Beausejour	245	-33	-35	29	23	5680	28	103	430	0.61	530	180	2.0	0.2	0.32	0.41	
	Boissevain	510	-32	-34	30	23	5500	28	119	390	0.54	510	180	2.2	0.2	0.40	0.52	
	Brandon	395	-33	-35	30	22	5760	28	108	375	0.56	460	180	2.1	0.2	0.38	0.49	
	Churchill	10	-38	-40	25	18	8950	12	76	265	0.82	410	260	3.0	0.2	0.43	0.55	
	Dauphin	295	-33	-35	30	22	5900	28	103	400	0.56	490	160	1.9	0.2	0.31	0.40	
	Flin Flon	300	-38	-40	27	20	6440	18	81	340	0.59	475	80	2.2	0.2	0.27	0.35	
	Gimli	220	-34	-36	29	23	5800	28	108	410	0.65	530	180	1.9	0.2	0.31	0.40	
	Island Lake	240	-36	-38	27	20	6900	18	86	380	0.67	550	80	2.6	0.2	0.29	0.37	
	Lac du Bonnet	260	-34	-36	29	23	5730	28	103	445	0.65	560	180	1.9	0.2	0.29	0.37	
	Lynn Lake	350	-40	- 42	27	19	7770	18	86	310	0.62	490	100	2.4	0.2	0.29	0.37	
	Morden	300	-31	-33	30	24	5400	28	119	420	0.55	520	180	2.2	0.2	0.40	0.52	
	Neepawa	365	-32	-34	29	23	5760	28	108	410	0.58	470	180	2.2	0.2	0.34	0.44	
	Pine Falls	220	-34	-36	28	23	5900	25	97	440	0.66	420	180	1.9	0.2	0.30	0.39	
	Portage la Prairie	260	-31	-33	30	23	5600	28	108	390	0.51	525	180	2.1	0.2	0.36	0.46	
	Rivers	465	-34	-36	29	23	5840	28	108	370	0.56	460	180	2.1	0.2	0.36	0.46	
	Sandilands	365	-32	-34	29	23	5650	28	113	460	0.58	550	180	2.2	0.2	0.31	0.40	
	Selkirk	225	-33	-35	29	23	5700	28	108	420	0.61	500	180	1.9	0.2	0.32	0.41	
	Split Lake	175	-38	-40	27	19	7900	18	76	325	0.66	500	120	2.5	0.2	0.30	0.39	r
\langle	Steinbach	270	-33	-35	29	23	5700	28	108	440	0.58	500	180	2.0	0.2	0.31	0.40	
	Swan River	335	-34	-37	29	22	6100	20	92	370	0.58	500	120	2.0	0.2	0.27	0.35	Ь
	The Pas	270	-36	-38	28	21	6480	18	81	330	0.59	450	160	2.2	0.2	0.29	0.37	
	Thompson	205	-40	-43	27	19	7600	18	86	350	0.64	540	100	2.4	0.2	0.28	0.36	
	Virden	435	-33	-35	30	23	5620	28	108	350	0.53	460	180	2.0	0.2	0.36	0.46	
	Winnipeg	235	-33	-35	30	23	5670	28	108	415	0.58	500	180	1.9	0.2	0.35	0.45	
	Ontario																	
	Ailsa Craig	230	-17	-19	30	23	3840	25	103	800	0.93	950	180	2.2	0.4	0.39	0.50	
	Ajax	95	-20	-22	30	23	3820	23	92	760	0.90	825	160	1.0	0.4	0.37	0.48	
	Alexandria	80	-24	-26	30	23	4600	25	103	800	0.91	975	160	2.4	0.4	0.31	0.40	
	Alliston	220	-23	-25	29	23	4200	28	113	690	0.81	875	120	2.0	0.4	0.28	0.36	
	Almonte	120	-26	-28	30	23	4620	25	97	730	0.84	800	140	2.5	0.4	0.32	0.41	
	Armstrong	340	-37	-40	28	21	6500	23	97	525	0.75	725	100	2.7	0.4	0.23	0.30	
		1	i	ı			i			1	1	i	1	i .	i .	1		1

Driv-

ing Rain

Wind

Pres-

sures,

Pa, 1/5

Ann.

Tot.

Ppn.,

mm

Moist.

Index

Snow Load,

kPa, 1/50

 S_{r}

Ss

Hourly Wind

Pressures, kPa

1/50

1/10

Design Temperature

July 2.5%

Wet

 $^{\circ}\text{C}$

Dry

°Č

January

°C

2.5%

°C

Elev.,

m

Province and Location

De-

gree-

Days

Below

18°C

One

Day

Rain,

1/50,

mm

Ann.

Rain,

mm

15

Min.

Rain.

 mm

Council, National R. National Building Code 2015. National Research Council.

85

400

10

270

-27

-33

-37

-21

-29

-35

-39

-23

Arnprior

Atikokan

Aurora

Attawapiskat

23

25

18

28

86

103

81

108

630

570

450

700

0.76

0.77

0.79

0.81

775

760

650

800

140

100

160

140

2.5

2.4

2.8

2.0

0.4

0.3

0.3

0.4

0.29

0.23

0.32

0.34

0.37

0.30

0.41

0.44

30

29

28

30

23

22

21

23

4680

5750

7100

4210

0.42	
0.48	
0.44	
0.35	
0.46	
0.36	
0.41	
0.36	
0.41	
0.44	
0.49	
0.30	
0.43	
0.48	
0.49	
0.35	
0.49	
0.35	
0.49	
0.39	
0.41	

		Elev	Des Janu	ign Te uary	mpera		De- gree-	15 Min.	One Day	Ann.	Moist.	Ann. Tot.	Driv- ing Rain Wind	Snow kPa,	,		/ Wind res, kPa
	Province and Location	m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Rain, mm	Rain, 1/50, mm	Rain, mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
	Bancroft	365	-28	-31	29	23	4740	25	92	720	0.85	900	100	3.1	0.4	0.25	0.32
	Barrie	245	-24	-26	29	23	4380	28	97	700	0.83	900	120	2.5	0.4	0.28	0.36
	Barriefield	100	-22	-24	28	23	3990	23	108	780	0.96	950	160	2.1	0.4	0.36	0.47
	Beaverton	240	-24	-26	30	23	4300	25	108	720	0.87	950	120	2.2	0.4	0.28	0.36
	Belleville	90	-22	-24	29	23	3910	23	97	760	0.89	850	180	1.7	0.4	0.33	0.43
Ī	Belmont	260	-17	-19	30	24	3840	25	97	850	0.95	950	180	1.7	0.4	0.36	0.47
	Kitchenuhmay- koosib (Big Trout Lake)	215	-38	-40	26	20	7450	18	92	400	0.75	600	150	3.2	0.2	0.33	0.42
	CFB Borden	225	-23	-25	29	23	4300	28	103	690	0.82	875	120	2.2	0.4	0.28	0.36
	Bracebridge	310	-26	-28	29	23	4800	25	103	830	0.95	1050	120	3.1	0.4	0.27	0.35
	Bradford	240	-23	-25	30	23	4280	28	108	680	0.80	800	120	2.1	0.4	0.28	0.36
Ť	Brampton	215	-19	-21	30	23	4100	28	119	720	0.81	820	140	1.3	0.4	0.34	0.44
	Brantford	205	-18	-20	30	23	3900	23	103	780	0.89	850	160	1.3	0.4	0.33	0.42
	Brighton	95	-21	-23	29	23	4000	23	94	760	0.90	850	160	1.6	0.4	0.37	0.48
	Brockville	85	-23	-25	29	23	4060	25	103	770	0.89	975	180	2.2	0.4	0.34	0.44
	Burk's Falls	305	-26	-28	29	22	5020	25	97	810	0.94	1010	120	2.7	0.4	0.27	0.35
Ť	Burlington	80	-17	-19	31	23	3740	23	103	770	0.91	850	160	1.1	0.4	0.36	0.46
	Cambridge	295	-18	-20	29	23	4100	25	113	800	0.91	890	160	1.6	0.4	0.28	0.36
	Campbellford	150	-23	-26	30	23	4280	25	97	730	0.85	850	160	1.7	0.4	0.32	0.41
	Cannington	255	-24	-26	30	23	4310	25	108	740	0.85	950	120	2.2	0.4	0.28	0.36
	Carleton Place	135	-25	-27	30	23	4600	25	97	730	0.84	850	160	2.5	0.4	0.32	0.41
١	Cavan	200	-23	-25	30	23	4400	25	97	740	0.86	850	140	2.0	0.4	0.34	0.44
	Centralia	260	-17	-19	30	23	3800	25	103	820	0.95	1000	180	2.3	0.4	0.38	0.49
/	Chapleau	425	-35	-38	27	21	5900	20	97	530	0.72	850	80	3.6	0.4	0.23	0.30
	Chatham	180	-16	-18	31	24	3470	28	103	800	0.86	850	180	1.0	0.4	0.33	0.43
	Chesley	275	-19	-21	29	22	4320	28	103	810	0.94	1125	140	2.8	0.4	0.37	0.48
t	Clinton	280	-17	-19	29	23	4150	25	103	810	0.94	1000	160	2.6	0.4	0.38	0.49
	Coboconk	270	-25	- 27	30	23	4500	25	108	740	0.87	950	120	2.5	0.4	0.27	0.35
	Cobourg	90	-21	-23	29	23	3980	23	94	760	0.90	825	160	1.2	0.4	0.38	0.49
	Cochrane	245	-34	-36	29	21	6200	20	92	575	0.77	875	80	2.8	0.3	0.27	0.35
	Colborne	105	-21	-23	29	23	3980	23	94	760	0.90	850	160	1.6	0.4	0.38	0.49
T	Collingwood	190	-21	-23	29	23	4180	28	97	720	0.87	950	160	2.7	0.4	0.30	0.39
	Cornwall	35	-23	-25	30	23	4250	25	103	780	0.89	960	180	2.2	0.4	0.32	0.41
	Corunna	185	-16	-18	31	24	3600	25	100	760	0.87	800	180	1.0	0.4	0.36	0.47
	Deep River	145	-29	- 32	30	22	4900	23	92	650	0.82	850	100	2.5	0.4	0.27	0.35
	Deseronto	85	-22	-24	29	23	4070	23	92	760	0.89	900	160	1.9	0.4	0.33	0.43
t	Dorchester	260	-18	-20	30	24	3900	28	103	850	0.96	950	180	1.9	0.4	0.36	0.47
	Dorion	200	-33	-35	28	21	5950	20	103	550	0.77	725	160	2.8	0.4	0.30	0.39
	Dresden	185	-16	-18	31	24	3750	28	97	760	0.84	820	180	1.0	0.4	0.33	0.43
	Dryden	370	-34	-36	28	22	5850	25	97	550	0.70	700	120	2.4	0.3	0.23	0.30
_	Council, National R. National Building Cod				ouncil		·				<u> </u>				!		<u> </u>

7	
0	
3	C
5	
4	N I
0	
6	G
6	
6	
6	

			ign Te			De-	15	One			Ann.	Driv- ing Rain	Snow	Load, 1/50		/ Wind res, kPa
Province and Location	Elev.,	Jani	uary	July	2.5% I	gree- Days	Min.	Day Rain,	Ann. Rain,	Moist	Tot.	Wind	κra,	1/30	Fressu	les, kra
	m	2.5% °C	1% °C	Dry °C	Wet °C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
Dundalk	525	-22	-24	29	22	4700	28	108	750	0.89	1080	150	3.2	0.4	0.33	0.42
Dunnville	175	-15	-17	30	24	3660	23	108	830	0.95	950	160	2.0	0.4	0.36	0.46
Durham	340	-20	-22	29	22	4340	28	103	815	0.94	1025	140	2.8	0.4	0.34	0.44
Dutton	225	-16	-18	31	24	3700	28	92	850	0.96	925	180	1.3	0.4	0.36	0.47
Earlton	245	-33	-36	29	22	5730	23	92	560	0.75	820	120	3.1	0.4	0.35	0.45
Edison	365	-34	-36	28	22	5740	25	108	510	0.65	680	120	2.4	0.3	0.24	0.31
Elliot Lake	380	-26	- 28	29	21	4950	23	108	630	0.83	950	160	2.9	0.4	0.29	0.38
Elmvale	220	-24	-26	29	23	4200	28	97	720	0.87	950	140	2.6	0.4	0.28	0.36
Embro	310	-19	-21	30	23	3950	28	113	830	0.94	950	160	2.0	0.4	0.37	0.48
Englehart	205	-33	-36	29	22	5800	23	92	600	0.78	880	100	2.8	0.4	0.32	0.41
Espanola	220	-25	-27	29	21	4920	23	108	650	0.83	840	160	2.3	0.4	0.33	0.42
Exeter	265	-17	-19	30	23	3900	25	113	810	0.94	975	180	2.4	0.4	0.38	0.49
Fenelon Falls	260	-25	-27	30	23	4440	25	108	730	0.86	950	120	2.3	0.4	0.28	0.36
Fergus	400	-20	-22	29	23	4300	28	108	760	0.87	925	160	2.2	0.4	0.28	0.36
Forest	215	-16	-18	31	23	3740	25	103	810	0.95	875	160	2.0	0.4	0.37	0.48
Fort Erie	180	-15	-17	30	24	3650	23	108	860	0.98	1020	160	2.3	0.4	0.36	0.46
Fort Erie (Ridgeway)	190	-15	-17	30	24	3600	25	108	860	0.98	1000	160	2.3	0.4	0.36	0.46
Fort Frances	340	-33	-35	29	22	5440	25	108	570	0.71	725	120	2.3	0.3	0.24	0.31
Gananoque	80	-22	-24	28	23	4010	23	103	760	0.91	900	180	2.1	0.4	0.36	0.47
Geraldton	345	-36	-39	28	21	6450	20	86	550	0.77	725	100	2.9	0.4	0.23	0.30
Glencoe	215	-16	-18	31	24	3680	28	103	800	0.91	925	180	1.5	0.4	0.33	0.43
Goderich	185	-16	-18	29	23	4000	25	92	810	0.95	950	180	2.4	0.4	0.43	0.55
Gore Bay	205	-24	-26	28	22	4700	23	92	640	0.84	860	160	2.6	0.4	0.34	0.44
Graham	495	-35	-37	29	22	5940	23	97	570	0.75	750	140	2.6	0.3	0.23	0.30
Gravenhurst (Muskoka Airport)	255	- 26	- 28	29	23	4760	25	103	790	0.92	1050	120	2.7	0.4	0.28	0.36
Grimsby	85	-16	-18	30	23	3520	23	108	760	0.90	875	160	0.9	0.4	0.36	0.46
Guelph	340	-19	-21	29	23	4270	28	103	770	0.88	875	140	1.9	0.4	0.28	0.36
Guthrie	280	-24	-26	29	23	4300	28	103	700	0.83	950	120	2.5	0.4	0.28	0.36
Haileybury	210	-32	-35	30	22	5600	23	92	590	0.77	820	120	2.4	0.4	0.34	0.44
Haldimand (Caledonia)	190	-18	-20	30	23	3750	23	108	810	0.93	875	160	1.2	0.4	0.34	0.44
Haldimand (Hagersville)	215	-17	-19	30	23	3760	25	97	840	0.95	875	160	1.3	0.4	0.36	0.46
Haliburton	335	-27	-29	29	23	4840	25	92	780	0.90	980	100	2.9	0.4	0.27	0.35
Halton Hills (Georgetown)	255	-19	-21	30	23	4200	28	119	750	0.84	850	140	1.4	0.4	0.29	0.37
Hamilton	90	-17	-19	31	23	3460	23	108	810	0.90	875	160	1.1	0.4	0.36	0.46
Hanover	270	-19	-21	29	22	4300	28	103	790	0.92	1050	140	2.6	0.4	0.37	0.48
Hastings	200	-24	-26	30	23	4280	25	92	730	0.85	840	140	2.0	0.4	0.32	0.41
Hawkesbury	50	-25	-27	30	23	4610	23	103	800	0.91	925	160	2.3	0.4	0.32	0.41
Hearst	245	-35	-37	29	21	6450	20	86	520	0.74	825	80	2.8	0.3	0.23	0.30

}	
,	
,	
)	N I
ļ	
ļ	G
)	
	l

			ign Te			De-	15	One			Ann.	Driv- ing Rain	Snow kPa,		Hourly Pressur	
Province and Location	Elev.,	Janı	uary	July :	∠.5%	gree- Days	Min.	Day Rain,	Ann. Rain,	Moist	Tot.	Wind	κra,	1/30	1 169901	UO, KFA
	m	2.5% °C	1% °C	Dry °C	Wet °C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
Honey Harbour	180	-24	-26	29	23	4300	25	97	710	0.87	1050	160	2.7	0.4	0.30	0.39
Hornepayne	360	-37	-40	28	21	6340	20	93	420	0.68	750	80	3.3	0.4	0.23	0.30
Huntsville	335	-26	-29	29	22	4850	25	103	800	0.93	1000	120	2.9	0.4	0.27	0.35
Ingersoll	280	-18	- 20	30	23	3920	28	108	840	0.95	950	180	1.7	0.4	0.37	0.48
Iroquois Falls	275	-33	-36	29	21	6100	20	86	575	0.77	825	100	2.9	0.3	0.29	0.37
Jellicoe	330	-36	-39	28	21	6400	20	86	550	0.76	750	100	2.7	0.4	0.23	0.30
Kapuskasing	245	-34	-36	29	21	6250	20	86	550	0.76	825	100	3.0	0.3	0.24	0.31
Kemptville	90	-25	-27	30	23	4540	25	92	750	0.86	925	160	2.3	0.4	0.32	0.41
Kenora	370	-33	-35	28	22	5630	25	113	515	0.64	630	120	2.5	0.3	0.24	0.31
Killaloe	185	-28	-31	30	22	4960	23	86	680	0.83	825	120	2.7	0.4	0.27	0.35
Kincardine	190	-17	-19	28	22	3890	25	92	800	0.95	950	180	2.6	0.4	0.43	0.55
Kingston	80	- 22	-24	28	23	4000	23	108	780	0.96	950	180	2.1	0.4	0.36	0.47
Kinmount	295	-26	-28	29	23	4600	25	108	750	0.88	950	120	2.7	0.4	0.27	0.35
Kirkland Lake	325	-33	-36	29	22	6000	23	92	600	0.78	875	100	2.9	0.3	0.30	0.39
Kitchener	335	-19	-21	29	23	4200	28	119	780	0.89	925	140	2.0	0.4	0.29	0.37
Lakefield	240	-24	-26	30	23	4330	25	92	720	0.85	850	140	2.2	0.4	0.29	0.38
Lansdowne House	240	-38	-40	28	21	7150	23	92	500	0.78	680	140	3.0	0.2	0.25	0.32
Leamington	190	-15	-17	31	24	3400	28	113	800	0.91	875	180	0.8	0.4	0.36	0.47
Lindsay	265	-24	-26	30	23	4320	25	103	720	0.84	850	140	2.3	0.4	0.29	0.38
Lion's Head	185	-19	-21	27	22	4300	25	103	700	0.89	950	180	2.7	0.4	0.37	0.48
Listowel	380	-19	-21	29	23	4300	28	119	800	0.93	1000	160	2.6	0.4	0.36	0.47
London	245	-18	-20	30	24	3900	28	103	825	0.94	975	180	1.9	0.4	0.36	0.47
Lucan	300	-17	-19	30	23	3900	25	113	810	0.94	1000	180	2.3	0.4	0.39	0.50
Maitland	85	-23	-25	29	23	4080	25	103	770	0.89	975	180	2.2	0.4	0.34	0.44
Markdale	425	-20	-22	29	22	4500	28	103	820	0.94	1050	160	3.2	0.4	0.32	0.41
Markham	175	-21	-23	31	24	4000	25	86	720	0.81	825	140	1.3	0.4	0.34	0.44
Martin	485	-35	-37	29	22	5900	25	103	560	0.75	750	120	2.6	0.3	0.23	0.30
Matheson	265	-33	-36	29	21	6080	20	86	580	0.77	825	100	2.8	0.3	0.30	0.39
Mattawa	165	-29	-31	30	22	5050	23	86	700	0.86	875	100	2.1	0.4	0.25	0.32
Midland	190	-24	-26	29	23	4200	25	97	740	0.88	1060	160	2.7	0.4	0.30	0.39
Milton	200	-18	-20	30	23	3920	25	125	750	0.85	850	160	1.3	0.4	0.33	0.43
Milverton	370	-19	-21	29	23	4200	28	108	800	0.93	1050	160	2.4	0.4	0.33	0.43
Minden	270	-27	- 29	29	23	4640	25	97	780	0.90	1010	100	2.7	0.4	0.27	0.35
Mississauga	160	-18	-20	30	23	3880	25	113	720	0.85	800	160	1.1	0.4	0.34	0.44
Mississauga (Lester B. Pearson Int'l Airport)	170	-20	-22	31	24	3890	26	108	685	0.81	790	160	1.1	0.4	0.34	0.44
Mississauga (Port Credit)	75	-18	-20	29	23	3780	25	108	720	0.87	800	160	0.9	0.4	0.37	0.48
Mitchell	335	-18	-20	29	23	4100	28	113	810	0.94	1050	160	2.4	0.4	0.37	0.48
Moosonee	10	-36	-38	28	22	6800	18	81	500	0.84	700	160	2.7	0.3	0.27	0.35
Morrisburg	75	-23	-25	30	23	4370	25	103	800	0.91	950	180	2.3	0.4	0.32	0.41

N
G

	Elev.,	Des Jani	ign Te uary	mpera July		De- gree-	15 Min.	One Day	Ann.	Moist.	Ann. Tot.	Driv- ing Rain Wind	Snow kPa,	Load, 1/50	Hourly Pressu	Wind res, kPa
Province and Location	m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Rain, mm	Rain, 1/50, mm	Rain, mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	Ss	S _r	1/10	1/50
Mount Forest	420	-21	-24	28	22	4700	28	103	740	0.87	940	140	2.7	0.4	0.32	0.41
Nakina	325	-36	-38	28	21	6500	20	86	540	0.76	750	100	2.8	0.4	0.23	0.30
Nanticoke (Jarvis)	205	-17	-18	30	23	3700	28	108	840	0.95	900	160	1.4	0.4	0.37	0.48
Nanticoke (Port Dover)	180	-15	-17	30	24	3600	25	108	860	0.98	950	140	1.2	0.4	0.37	0.48
Napanee	90	-22	-24	29	23	4140	23	92	770	0.90	900	160	1.9	0.4	0.33	0.43
New Liskeard	180	- 32	-35	30	22	5570	23	92	570	0.75	810	100	2.6	0.4	0.33	0.43
Newcastle	115	-20	-22	30	23	3990	23	86	760	0.90	830	160	1.5	0.4	0.37	0.48
Newcastle (Bowmanville)	95	-20	-22	30	23	4000	23	86	760	0.90	830	160	1.4	0.4	0.37	0.48
Newmarket	185	- 22	-24	30	23	4260	28	108	700	0.81	800	140	2.0	0.4	0.29	0.38
Niagara Falls	210	-16	-18	30	23	3600	23	96	810	0.94	950	160	1.8	0.4	0.33	0.43
North Bay	210	-28	-30	28	22	5150	25	95	775	0.93	975	120	2.2	0.4	0.27	0.34
Norwood	225	-24	-26	30	23	4320	25	92	720	0.84	850	120	2.1	0.4	0.32	0.41
Oakville	90	-18	-20	30	23	3760	23	97	750	0.90	850	160	1.1	0.4	0.36	0.47
Orangeville	430	- 21	-23	29	23	4450	28	108	730	0.84	875	140	2.3	0.4	0.28	0.36
Orillia	230	-25	-27	29	23	4260	25	103	740	0.88	1000	120	2.4	0.4	0.28	0.36
Oshawa	110	-19	-21	30	23	3860	23	86	760	0.90	875	160	1.4	0.4	0.37	0.48
Ottawa (Metropolitan)																
Ottawa (City Hall)	70	-25	-27	30	23	4440	23	86	750	0.84	900	160	2.4	0.4	0.32	0.41
Ottawa (Barrhaven)	98	-25	-27	30	23	4500	25	92	750	0.84	900	160	2.4	0.4	0.32	0.41
Ottawa (Kanata)	98	-25	-27	30	23	4520	25	92	730	0.84	900	160	2.5	0.4	0.32	0.41
Ottawa (M-C Int'I Airport)	125	- 25	-27	30	23	4500	24	89	750	0.84	900	160	2.4	0.4	0.32	0.41
Ottawa (Orleans)	70	-26	-28	30	23	4500	23	91	750	0.84	900	160	2.4	0.4	0.32	0.41
Owen Sound	215	-19	-21	29	22	4030	28	113	760	0.90	1075	160	2.8	0.4	0.37	0.48
Pagwa River	185	-35	-37	28	21	6500	20	86	540	0.76	825	80	2.7	0.4	0.23	0.30
Paris	245	-18	-20	30	23	4000	23	96	790	0.90	925	160	1.4	0.4	0.33	0.42
Parkhill	205	-16	-18	31	23	3800	25	103	800	0.93	925	180	2.1	0.4	0.39	0.50
Parry Sound	215	-24	-26	28	22	4640	23	97	820	0.95	1050	160	2.8	0.4	0.30	0.39
Pelham (Fonthill)	230	-15	-17	30	23	3690	23	96	820	0.94	950	160	2.1	0.4	0.33	0.42
Pembroke	125	-28	-31	30	23	4980	23	105	640	0.80	825	100	2.5	0.4	0.27	0.35
Penetanguishene	220	-24	-26	29	23	4200	25	97	720	0.87	1050	160	2.8	0.4	0.30	0.39
Perth	130	-25	- 27	30	23	4540	25	92	730	0.84	900	140	2.3	0.4	0.32	0.41
Petawawa	135	-29	-31	30	23	4980	23	92	640	0.80	825	100	2.6	0.4	0.27	0.35
Peterborough	200	-23	- 25	30	23	4400	25	92	710	0.83	840	140	2.0	0.4	0.32	0.41
Petrolia	195	-16	-18	31	24	3640	25	108	810	0.89	920	180	1.3	0.4	0.36	0.47
Pickering (Dunbarton)	85	-19	- 21	30	23	3800	23	92	730	0.88	825	140	1.0	0.4	0.37	0.48
Picton	95	-21	-23	29	23	3980	23	92	770	0.91	940	160	2.0	0.4	0.38	0.49
Plattsville	300	-19	-21	29	23	4150	28	103	820	0.93	950	140	1.9	0.4	0.33	0.42
Point Alexander	150	-29	- 32	30	22	4960	23	92	650	0.82	850	100	2.5	0.4	0.27	0.35
Port Burwell	195	-15	-17	30	24	3800	25	92	930	1.05	1000	180	1.2	0.4	0.36	0.47

			°C	°C	°C	°C	18°C	mm	mm			mm	Pa, 1/5	S _S	S _r	1/10	1/50	
Ì	Port Colborne	180	-15	-17	30	24	3600	23	108	850	0.97	1000	160	2.1	0.4	0.36	0.46	
Ī	Port Elgin	205	-17	-19	28	22	4100	25	92	790	0.94	850	180	2.8	0.4	0.43	0.55	
	Port Hope	100	-21	-23	29	23	3970	23	94	760	0.90	825	180	1.2	0.4	0.37	0.48	
	Port Perry	270	- 22	-24	30	23	4260	25	97	720	0.84	850	140	2.4	0.4	0.34	0.44	
	Port Stanley	180	-15	-17	31	24	3850	25	92	940	1.05	975	180	1.2	0.4	0.36	0.47	
	Prescott	90	- 23	-25	29	23	4120	25	103	770	0.88	975	180	2.2	0.4	0.34	0.44	
	Princeton	280	-18	-20	30	23	4000	25	97	810	0.92	925	160	1.5	0.4	0.33	0.42	
	Raith	475	-34	-37	28	22	5900	23	97	570	0.75	750	120	2.7	0.4	0.23	0.30	
	Rayside-Balfour (Chelmsford)	270	-28	-30	29	21	5200	25	92	650	0.80	850	180	2.5	0.4	0.35	0.45	
	Red Lake	360	- 35	-37	28	21	6220	20	92	470	0.69	630	120	2.6	0.3	0.23	0.30	ĺ
	Renfrew	115	- 27	-30	30	23	4900	23	97	620	0.75	810	140	2.5	0.4	0.27	0.35	ĺ
	Richmond Hill	230	-21	-23	31	24	4000	25	97	740	0.83	850	140	1.5	0.4	0.34	0.44	
	Rockland	50	-26	-28	30	23	4600	23	92	780	0.89	950	160	2.4	0.4	0.31	0.40	
	Sarnia	190	-16	-18	31	24	3750	25	100	750	0.87	825	180	1.1	0.4	0.36	0.47	
	Sault Ste. Marie	190	- 25	-28	29	22	4960	23	97	660	0.89	950	200	3.1	0.4	0.34	0.44	
	Schreiber	310	-34	-36	27	21	5960	20	103	600	0.82	850	160	3.3	0.4	0.30	0.39	Ν
	Seaforth	310	-17	-19	30	23	4100	25	108	810	0.94	1025	160	2.5	0.4	0.37	0.48	
	Shelburne	495	- 22	-24	29	23	4700	28	108	740	0.88	900	150	3.1	0.4	0.31	0.40	
	Simcoe	210	-17	-19	30	24	3700	28	113	860	0.97	950	160	1.3	0.4	0.35	0.45	
	Sioux Lookout	375	-34	-36	28	22	5950	25	97	520	0.69	710	100	2.6	0.3	0.23	0.30	
	Smiths Falls	130	- 25	-27	30	23	4540	25	92	730	0.84	850	140	2.3	0.4	0.32	0.41	
	Smithville	185	-16	-18	30	23	3650	23	108	800	0.92	900	160	1.5	0.4	0.33	0.42	r
/	Smooth Rock Falls	235	-34	-36	29	21	6250	20	92	560	0.77	850	80	2.7	0.3	0.25	0.32	
	South River	355	- 27	-29	29	22	5090	25	103	830	0.96	975	120	2.8	0.4	0.27	0.35	ĺ
	Southampton	180	-17	-19	28	22	4100	25	92	800	0.95	830	180	2.7	0.4	0.41	0.53	Ĺ
ļ	St. Catharines	105	-16	-18	30	23	3540	23	92	770	0.90	850	160	1.0	0.4	0.36	0.46	
	St. Mary's	310	-18	-20	30	23	4000	28	108	820	0.95	1025	160	2.2	0.4	0.36	0.47	
	St. Thomas	225	-16	-18	31	24	3780	25	103	900	0.99	975	180	1.4	0.4	0.36	0.47	
	Stirling	120	-23	-25	30	23	4220	25	97	740	0.86	850	120	1.7	0.4	0.31	0.40	
	Stratford	360	-18	-20	29	23	4050	28	113	820	0.95	1050	160	2.3	0.4	0.35	0.45	
	Strathroy	225	-17	-19	31	24	3780	25	103	770	0.88	950	180	1.9	0.4	0.36	0.47	
	Sturgeon Falls	205	-28	-30	29	21	5200	25	95	700	0.86	910	140	2.4	0.4	0.27	0.35	
	Sudbury	275	- 28	-30	29	21	5180	25	97	650	0.79	875	200	2.5	0.4	0.36	0.46	
	Sundridge	340	- 27	-29	29	22	5080	25	97	840	0.97	975	120	2.8	0.4	0.27	0.35	
	Tavistock	340	-19	-21	29	23	4100	28	113	820	0.95	1010	160	2.1	0.4	0.35	0.45	
ļ	Temagami	300	-30	-33	30	22	5420	23	92	650	0.82	875	120	2.6	0.4	0.29	0.37	

One

Day

Rain,

1/50,

Ann.

Rain,

mm

Moist.

Index

15

Min.

Rain,

 mm

De-

gree-

Days

Below

Driv-

ing Rain

Wind

Pres-

sures,

Ann.

Tot.

Ppn.,

mm

Snow Load,

kPa, 1/50

 S_r

 S_{s}

Hourly Wind

Pressures, kPa

1/50

1/10

Design Temperature

July 2.5%

Wet

 $^{\circ}\text{C}$

Dry

°Ć

January

°С

°С

Elev.,

m

Province and Location

Council, National R. National Building Code 2015. National Research Council.

280

205

210

-19

-16

-31

-21

-18

-33

30

31

29

23

23

21

3950

3710

5650

Thamesford

Thunder Bay

Thedford

28

25

23

108

103

108

820

810

560

0.93

0.95

0.76

975

900

710

160

180

160

1.9

2.1

2.9

0.4

0.4

0.4

0.37

0.39

0.30

0.48

0.50

0.39

Ν

illsonburg immins immins (Porcupine) oronto Metropolitan egion Etobicoke	215 300 295	2.5% °C -17	1% °C	July : Dry °C	Wet	gree- Days	Min.	Day	Ann.	Moist.	Tot.	I Wind				
immins immins (Porcupine) pronto Metropolitan egion	300		-10		°C	Below 18°C	Rain, mm	Rain, 1/50, mm	Rain, mm	Index	Ppn., mm	Wind Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
immins (Porcupine) pronto Metropolitan egion		-34	-13	30	24	3840	25	103	880	0.98	980	160	1.3	0.4	0.34	0.44
oronto Metropolitan egion	295	0-	-36	29	21	5940	20	108	560	0.75	875	100	3.1	0.3	0.27	0.35
egion .		-34	-36	29	21	6000	20	103	560	0.75	875	100	2.9	0.3	0.29	0.37
Etohicoke																
Liobioono	160	-20	-22	31	24	3800	26	108	720	0.80	800	160	1.1	0.4	0.34	0.44
North York	175	- 20	- 22	31	24	3760	25	108	730	0.82	850	150	1.2	0.4	0.34	0.44
Scarborough	180	-20	- 22	31	24	3800	25	92	730	0.87	825	160	1.2	0.4	0.36	0.47
Toronto (City Hall)	90	-18	- 20	31	23	3520	25	97	720	0.86	820	160	0.9	0.4	0.34	0.44
renton	80	- 22	-24	29	23	4110	23	97	760	0.89	850	160	1.6	0.4	0.36	0.47
out Creek	330	-27	- 29	29	22	5100	25	103	780	0.92	975	120	2.7	0.4	0.27	0.35
xbridge	275	-22	-24	30	23	4240	25	103	700	0.82	850	140	2.4	0.4	0.33	0.42
aughan (Woodbridge)	165	-20	-22	31	24	4100	26	113	700	0.80	800	140	1.1	0.4	0.34	0.44
• • • • • • • • • • • • • • • • • • • •	215	-15	-17	30	24	3680	25	113	880	0.99	950	160	1.3	0.4	0.36	0.47
/alkerton	275	-18	-20	30	22	4300	28	103	790		1025	160	2.7	0.4	0.39	0.50
/allaceburg	180	-16		31		3600	28	97	760			180		0.4	0.35	0.45
· ·	330	-19					28	119	780	0.89	925	160	2.0	0.4	0.29	0.37
/atford	240	-17	-19	31	24	3740	25	108	790	0.90	950	160	1.9	0.4	0.36	0.47
lawa	290	-34	-36	26	21	5840	20	93	725	0.93	950	160	3.4	0.4	0.30	0.39
							23						-		1	0.43
							28									0.47
	_	_	-	_			-							_		0.48
•																0.45
* ' '	375					6150	20		575		825	100		0.4		0.30
							-							_		0.48
																0.47
																0.50
-																0.44
																0.47
· •						0.00			0.0	0.02	-			•••	0.00	J
	95	-24	-27	30	23	4620	21	107	860	0.97	1050	180	23	0.4	0.27	0.35
																0.35
																0.32
																0.35
																0.41
																0.50
																0.48
																0.42
·																0.42
			-	-	Ī -	_	-									0.41
	· ·	Toronto (City Hall) 90 renton 80 rout Creek 330 xbridge 275 aughan (Woodbridge) 165 ittoria 215 //alkerton 275 //allaceburg 180 //aterloo 330 //atford 240 //awa 290 //elland 180 //est Lorne 215 //hitby 85 //hitby (Brooklin) 160 //hite River 375 //iarton 185 //indsor 185 //ingham 310 //oodstock 300 //yoming 215 ec cton-Vale 95 Ilma 110 mos 295 sbestos 245 ylmer 90 aie-Comeau 60 aie-Saint-Paul 20 eauport 45 edford 555	Toronto (City Hall) 90 -18 renton 80 -22 rout Creek 330 -27 xbridge 275 -22 aughan (Woodbridge) 165 -20 ittoria 215 -15 /alkerton 275 -18 /allaceburg 180 -16 /aterloo 330 -19 /attord 240 -17 /awa 290 -34 /elland 180 -15 //est Lorne 215 -16 //hitby 85 -20 //hitby (Brooklin) 160 -20 //hite River 375 -39 /indsor 185 -16 /ingham 310 -18 /oodstock 300 -19 /ingham 310 -18 /oodstock 300 -19 ec cton-Vale 95 -24 Ima 110 -31 mos 295 -34 sbestos 245 -26 ylmer 90 -25 aie-Comeau 60 -27 aie-Saint-Paul 20 -27 aie-Saint-Paul 20 -27 aie-Saint-Paul 20 -27 aie-Gord 55 -24	Toronto (City Hall) 90 -18 -20 renton 80 -22 -24 rout Creek 330 -27 -29 xbridge 275 -22 -24 aughan (Woodbridge) 165 -20 -22 ittoria 215 -15 -17 /alkerton 275 -18 -20 /allaceburg 180 -16 -18 /aterloo 330 -19 -21 /awa 290 -34 -36 /elland 180 -15 -17 /est Lorne 215 -16 -18 /hitby 85 -20 -22 /hitby (Brooklin) 160 -20 -22 /hittoria 375 -39 -42 /ingham 310 -18 -20 /oodstock 300 -19 -21 /ingham 310 -18 -20 /oodstock 300 -19 -21 ma 110 -31 -33 mos 295 -34 -36 sbestos 245 -26 -28 ylmer 90 -25 -28 aie-Comeau 60 -27 -29 aie-Saint-Paul 20 -27 -29 edford 55 -24 -26	Toronto (City Hall) 90 -18 -20 31 renton 80 -22 -24 29 rout Creek 330 -27 -29 29 xbridge 275 -22 -24 30 aughan (Woodbridge) 165 -20 -22 31 ittoria 215 -15 -17 30 /alkerton 275 -18 -20 30 /allaceburg 180 -16 -18 31 /aterloo 330 -19 -21 29 /atford 240 -17 -19 31 /awa 290 -34 -36 26 /elland 180 -15 -17 30 /est Lorne 215 -16 -18 31 /hitby 85 -20 -22 30 /hitby (Brooklin) 160 -20 -22 30 /hitby (Brooklin) 160 -20 -22 30 /indsor 185 -16 -18 32 /ingham 310 -18 -20 30 /oodstock 300 -19 -21 29 cton-Vale 95 -24 -27 30 Ima 110 -31 -33 28 mos 295 -34 -36 28 sbestos 245 -26 -28 29 ylmer 90 -25 -28 30 aie-Comeau 60 -27 -29 28 edford 55 -24 -26 -29 28 edford 55 -24 -26 29	Toronto (City Hall) 90 -18 -20 31 23 renton 80 -22 -24 29 23 rout Creek 330 -27 -29 29 22 xbridge 275 -22 -24 30 23 aughan (Woodbridge) 165 -20 -22 31 24 ittoria 215 -15 -17 30 24 /alkerton 275 -18 -20 30 22 /allaceburg 180 -16 -18 31 24 /attorid 240 -17 -19 31 24 /attorid 240 -17 -19 31 24 /alwa 290 -34 -36 26 21 /elland 180 -15 -17 30 23 /est Lorne 215 -16 -18 31 24 /hitby 85 -20 -22 30 23 /hitby (Brooklin) 160 -20 -22 30 23 /hittorid 185 -19 -21 29 22 /iarton 185 -19 -21 29 22 /iarton 185 -16 -18 32 24 /iarton 185 -16 -18 32 24 /iarton 185 -16 -18 32 24 /iarton 185 -16 -18 32 24 /iarton 195 -24 28 21 /iarton 295 -34 -36 26 21 /iarton 295 -34 -36 26 /iarton 295 -34 -36 28 21 /iarton 295 -34 -36 28 21 /iarton 295 -24 -27 30 23 /iarton 295 -34 -36 28 21 mos 295 -34 -36 28 21 sbestos 245 -26 -28 29 22 ylmer 90 -25 -28 30 23 aie-Comeau 60 -27 -29 25 19 aie-Saint-Paul 20 -27 -29 28 21 eauport 45 -26 -29 28 22	Toronto (City Hall) 90 -18 -20 31 23 3520 renton 80 -22 -24 29 23 4110 rout Creek 330 -27 -29 29 22 5100 xbridge 275 -22 -24 30 23 4240 aughan (Woodbridge) 165 -20 -22 31 24 4100 ittoria 215 -15 -17 30 24 3680 /alkerton 275 -18 -20 30 22 4300 /allaceburg 180 -16 -18 31 24 3600 /aterloo 330 -19 -21 29 23 4200 /attord 240 -17 -19 31 24 3740 /alwa 290 -34 -36 26 21 5840 /elland 180 -15 -17 30 23 3670 /est Lorne 215 -16 -18 31 24 3700 /hitby (Brooklin) 160 -20 -22 30 23 3820 /hitby (Brooklin) 160 -20 -22 30 23 3820 /hitby (Brooklin) 160 -20 -22 30 23 3820 /hithith River 375 -39 -42 28 21 6150 /hith River 375 -39 -42 28 21 6150 /hithgam 310 -18 -20 30 23 3910 /hodstock 300 -19 -21 30 23 3910 /hodstock 300 -19 -21 30 23 3910 /hodstock 300 -19 -21 30 23 3910 /hodstock 300 -19 -21 30 23 3910 /homa 110 -31 -33 28 22 5800 mos 295 -34 -36 28 21 6160 sbestos 245 -26 -28 29 22 4800 ylmer 90 -25 -28 30 23 4520 aie-Comeau 60 -27 -29 25 19 6020 aie-Saint-Paul 20 -27 -29 25 19 6020 aeuport 45 -26 -29 28 22 5100 edford 55 -24 -26 29 28 22 5100 edford 55 -24 -26 29 28 22 5100	Toronto (City Hall) 90 -18 -20 31 23 3520 25 renton 80 -22 -24 29 23 4110 23 rout Creek 330 -27 -29 29 22 5100 25 xbridge 275 -22 -24 30 23 4240 25 aughan (Woodbridge) 165 -20 -22 31 24 4100 26 ittoria 215 -15 -17 30 24 3680 25 /alkerton 275 -18 -20 30 22 4300 28 /allaceburg 180 -16 -18 31 24 3600 28 /aterloo 330 -19 -21 29 23 4200 28 /aterloo 330 -19 -21 29 23 4200 28 /aterloo 330 -19 -21 29 23 4200 28 /alkawa 290 -34 -36 26 21 5840 20 /alland 180 -15 -17 30 23 3670 23 /allacebure 215 -16 -18 31 24 3700 28 /alland 180 -15 -17 30 23 3670 23 /alland 180 -15 -17 30 23 3670 23 /alland 180 -15 -17 30 23 3670 23 /alland 180 -15 -17 30 23 3670 23 /alland 180 -15 -17 30 23 3670 23 /alland 180 -15 -16 -18 31 24 3700 28 /alland 180 -15 -16 -18 31 24 3700 28 /alland 180 -20 -22 30 23 3820 23 /alland 180 -20 -22 30 23 3820 23 /alland 180 -20 -22 30 23 3820 23 /alland 180 -18 -20 30 23 4010 23 /alland 180 -18 -20 30 23 4010 23 /alland 180 -18 -20 30 23 4220 28 /alland 180 -18 -20 30 23 4220 28 /alland 180 -18 -20 30 23 4220 28 /alland 180 -18 -20 30 23 3910 28 /alland 190 -21 30 23 3910 28 /alland 190 -21 30 23 3910 28 /alland 190 -21 30 23 3910 28 /alland 190 -21 30 23 4620 21 /alland 190 -21 -21 30 23 4620 21 /alland 190 -21 -21 30 23 4620 20 /alland 190 -21 -21 30 23 4620 21 /alland 190 -21 -21 30 23 4620 20 /alland 190 -21 -21 -29 22 4800 23 /alland 190 -21 -21 -29 22 4800 23 /alland 190 -21 -21 -29 22 4800 23 /alland 190 -21 -21 -29 22 4800 23 /alland 190 -21 -21 -29 22 4800 23 /alland 190 -21 -21 -29 25 -28 30 23 4520 23 /alland 190 -21 -21 -29 25 -28 30 23 4520 23 /alland 190 -21 -21 -29 25 -28 30 23 4520 23 /alland 190 -21 -21 -29 25 -28 30 23 4520 23 /alland 190 -21 -21 -29 25 -28 30 23 4520 23 /alland 190 -21 -21 -29 25 -28 30 23 4520 23 /alland 190 -21 -21 -29 25 -28 30 23 4520 23 /alland 190 -21 -21 -29 25 -28 30 23 4520 23 /alland 190 -21 -21 -29 25 -28 30 23 4420 23 /alland 190 -21 -21 -29 25 -28 30 23 4420 23 /alland 190 -21 -29 28 25 -29 28 25 -29 20 20 20 -20 -20 20 20 20 20 20 20 20 20 20 20 20 20 2	Toronto (City Hall) 90 -18 -20 31 23 3520 25 97 renton 80 -22 -24 29 23 4110 23 97 rout Creek 330 -27 -29 29 22 5100 25 103 aughan (Woodbridge) 165 -20 -22 31 24 4100 26 113 ittoria 215 -15 -17 30 24 3680 25 113 rational rationa	Toronto (City Hall) 90 -18 -20 31 23 3520 25 97 720 Tenton 80 -22 -24 29 23 4110 23 97 760 Tout Creek 330 -27 -29 29 22 5100 25 103 780 Abridge 275 -22 -24 30 23 4240 25 103 700 Tout Creek 36 -20 -22 31 24 4100 26 113 700 Tout Creek 370 -29 -29 31 24 4100 26 113 700 Tout Creek 370 -20 -22 31 24 4100 26 113 700 Tout Creek 370 -20 -22 31 24 4100 26 113 700 Tout Creek 370 -20 -22 31 24 4100 26 113 700 Tout Creek 370 -20 -22 31 24 4100 26 113 700 Tout Creek 370 -20 -22 31 24 4100 26 113 700 Tout Creek 370 -20 -22 30 22 4300 28 103 790 Tout Creek 370 -21 29 23 4200 28 103 790 Tout Creek 370 -21 29 23 4200 28 119 780 Tout Creek 370 -21 29 23 4200 28 119 780 Tout Creek 370 -21 29 23 4200 28 119 780 Tout Creek 370 -21 29 23 4200 28 119 780 Tout Creek 370 -22 30 23 3670 23 103 840 Tout Creek 370 -22 30 23 3670 23 103 840 Tout Creek 370 -22 30 23 3820 23 86 760 Tout Creek 370 -22 30 23 4010 23 86 770 Tout Creek 370 -22 30 23 4010 23 86 770 Tout Creek 370 -22 30 23 4010 23 86 770 Tout Creek 370 -22 30 23 4010 23 86 770 Tout Creek 370 -22 30 23 4010 25 103 740 Tout Creek 370 -22 30 23 4010 25 103 740 Tout Creek 370 -22 30 23 4010 25 103 740 Tout Creek 370 -22 30 23 4010 25 103 740 Tout Creek 370 -22 30 23 4010 25 103 740 Tout Creek 370 -22 30 23 4010 25 103 740 Tout Creek 370 -22 30 23 4010 25 103 740 Tout Creek 370 -22 30 23 4010 25 103 740 Tout Creek 370 -22 30 23 4020 25 103 740 Tout Creek 370 -22 30 23 4020 25 103 740 Tout Creek 370 -22 30 23 4020 25 103 740 Tout Creek 370 -22 30 23 4020 25 103 740 Tout Creek 370 -22 30 23 4020 25 103 740 Tout Creek 370 -22 30 23 4020 25 103 740 Tout Creek 370 -22 30 23 4020 25 103 740 Tout Creek 370 -22 30 23 4020 25 103 740 Tout Creek 370 -22 30 23 4020 25 103 740 Tout Creek 370 -22 30 23 4020 25 103 740 Tout Creek 370 -22 30 23 4020 26 103 740 Tout Creek 370 -22 30 23 4020 26 103 740 Tout Creek 370 -22 30 23 4020 26 103 740 Tout Creek 370 -22 30 20 20 20 20 20 20 20 20 20 20 20 20 20	Toronto (City Hall) 90 -18 -20 31 23 3520 25 97 720 0.86 renton	Toronto (City Hall) 90 -18 -20 31 23 3520 25 97 720 0.86 820 renton 80 -22 -24 29 23 4110 23 97 760 0.89 850 rout Creek 330 -27 -29 29 25 5100 25 103 780 0.92 975 xbridge 275 -22 -24 30 23 4240 25 103 700 0.82 850 aughan (Woodbridge) 165 -20 -22 31 24 4100 26 113 700 0.80 800 ittoria 215 -15 -17 30 24 3680 25 113 880 0.99 950 falkerton 275 -18 -20 30 22 4300 28 103 790 0.92 1025 falkerton 330 -19 -21 29 23 4200 28 119 780 0.89 925 falkerloo 330 -19 -21 29 23 4200 28 119 780 0.89 925 falkardod 240 -17 -19 31 24 3740 25 108 790 0.90 950 feet Lorne 215 -16 -18 31 24 3700 28 103 840 0.99 950 feet Lorne 215 -16 -18 31 24 3700 28 103 840 0.96 975 falkardod 180 -15 -17 30 23 3670 23 103 840 0.95 900 falkardod 180 -20 -22 30 23 3820 23 86 760 0.90 850 falkardod 180 -20 -22 30 23 3820 23 86 760 0.90 850 falkardod 180 -20 -22 30 23 3820 23 86 760 0.90 850 falkardod 185 -19 -21 29 22 4300 28 103 840 0.95 900 falkardod 185 -19 -21 29 22 4300 28 103 840 0.95 900 850 falkardod 185 -19 -21 29 22 4300 28 103 840 0.95 900 850 falkardod 185 -19 -21 29 22 4300 28 103 840 0.95 900 850 falkardod 185 -19 -21 29 22 4300 28 103 840 0.95 900 850 falkardod 185 -16 -18 32 24 3700 28 103 840 0.95 900 850 falkardod 185 -19 -21 29 22 4300 25 103 740 0.91 1000 falkardod 185 -19 -21 29 22 4300 25 103 740 0.91 1000 falkardod 185 -19 -21 30 23 3910 28 103 800 0.85 900 falkardod 185 -16 -18 31 24 3700 25 103 840 0.91 1050 falkardod 185 -16 -18 31 24 3700 25 103 840 0.91 1050 falkardod 185 -16 -18 31 24 3700 25 103 840 0.91 1050 falkardod 185 -16 -18 31 24 3700 25 103 840 0.91 1050 falkardod 185 -16 -18 31 24 3700 25 103 840 0.91 1050 800 800 800 800 800 800 800 800 800	Toronto (City Hall) 90 -18 -20 31 23 3520 25 97 720 0.86 820 160 erenton 80 -22 -24 29 23 4110 23 97 760 0.89 850 160 rout Creek 330 -27 -29 29 22 5100 25 103 780 0.92 975 120 xbridge 275 -22 -24 30 23 420 25 103 700 0.82 850 140 aughan (Woodbridge) 165 -20 -22 31 24 4100 26 113 700 0.80 800 140 dittoria 215 -15 -17 30 24 3680 25 113 880 0.99 950 160 Zalkerton 275 -18 -20 30 22 4300 28 103 790 0.92 1025 160 Zalkerton 330 -19 -21 29 23 4200 28 119 780 0.89 925 160 Zalkertoria 240 -17 -19 31 24 3740 25 108 790 0.99 950 160 Zalkertoria 240 -17 -19 31 24 3740 25 108 790 0.99 950 160 Zalkertoria 240 -17 -19 31 24 3740 25 108 790 0.99 950 160 Zalkertoria 25 -16 -18 31 24 3700 28 119 780 0.89 925 160 Zalkertoria 25 -16 -18 31 24 3700 28 103 840 0.95 950 160 Zalkertoria 25 -16 -18 31 24 3700 28 103 840 0.95 950 160 Zalkertoria 25 -16 -18 31 24 3700 28 103 840 0.95 900 180 Zalkertoria 25 -16 -18 31 24 3700 28 103 840 0.95 900 180 Zalkertoria 25 -16 -18 31 24 3700 28 103 840 0.95 900 180 Zalkertoria 25 -16 -18 31 24 3700 28 103 840 0.95 900 180 Zalkertoria 25 -16 -18 31 24 3700 28 103 840 0.95 900 180 Zalkertoria 25 -16 -18 31 24 3700 28 103 840 0.95 900 180 Zalkertoria 25 -16 -18 31 24 3700 28 103 840 0.95 900 180 Zalkertoria 25 -16 -18 32 24 3400 28 103 840 0.95 900 180 Zalkertoria 375 -39 -42 28 21 6150 20 92 575 0.80 825 100 Zalkertoria 375 -39 -42 28 21 6150 20 92 575 0.80 825 100 Zalkertoria 375 -39 -42 28 21 6150 20 92 575 0.80 825 100 Zalkertoria 310 -18 -20 30 23 3910 28 113 830 0.94 930 160 Zalkertoria 310 -18 -20 30 23 3910 28 113 830 0.94 930 160 Zalkertoria 310 -18 -20 30 23 3910 28 113 830 0.94 930 160 Zalkertoria 310 -18 -20 30 23 3420 23 86 770 0.91 1050 180 Zalkertoria 310 -18 -20 30 23 3400 25 103 815 0.92 900 180 Zalkertoria 310 -18 -20 30 23 3910 28 133 830 0.94 930 160 Zalkertoria 310 -18 -20 30 23 3910 28 133 830 0.94 930 160 Zalkertoria 310 -18 -20 30 23 3910 28 133 830 0.94 930 160 Zalkertoria 310 -18 -20 30 23 4520 23 91 700 0.86 950 180 Zalkertoria 310 25 -28 29 22 4800 23 91 700 0.86 950 100 38	Tronto (City Hall) 90 -18 -20 31 23 3520 25 97 720 0.86 820 160 0.9 renton 80 -22 -24 29 23 4110 23 97 760 0.89 850 160 1.6 rout Creek 330 -27 -29 29 22 5100 25 103 780 0.92 975 120 2.7 xbridge 275 -22 -24 30 23 4240 25 103 700 0.82 850 140 2.4 aughan (Woodbridge) 165 -20 -22 31 24 4100 26 113 700 0.80 800 140 1.1 ittoria 215 -15 -17 30 24 3680 25 113 880 0.99 950 160 1.3 raklerton 275 -18 -20 30 22 4300 28 103 790 0.92 1025 160 2.7 raklerton 330 -19 -21 29 23 4200 28 119 780 0.89 955 160 2.0 raklerton 330 -19 -21 29 23 4200 28 119 780 0.89 955 160 2.0 raklertod 240 -17 -19 31 24 3700 28 119 780 0.90 950 160 1.9 raklertod 240 -17 -19 31 24 3700 28 119 780 0.90 950 160 1.9 raklertod 240 -17 -19 31 24 3700 28 119 780 0.90 950 160 1.9 raklertod 240 -17 -19 31 24 3700 28 119 780 0.90 950 160 2.0 raklertod 240 -17 -19 31 24 3700 28 119 780 0.90 950 160 2.0 raklertod 240 -17 -19 31 24 3700 28 119 780 0.90 950 160 2.0 raklertod 250 -16 -18 31 24 3700 28 103 840 0.96 975 160 2.0 raklertod 180 -15 -16 -18 31 24 3700 28 103 840 0.96 975 160 2.0 raklertod 180 -15 -16 -18 31 24 3700 28 103 840 0.96 975 160 2.0 raklertod 180 -15 -17 30 23 3670 23 103 840 0.96 975 160 2.0 raklertod 180 -15 -17 30 23 3800 23 86 760 0.90 850 160 1.2 raklertod 180 -15 -17 30 23 3800 23 86 760 0.90 850 160 1.2 raklertod 180 -15 -17 30 23 3800 23 86 760 0.90 850 160 1.2 raklertod 180 -15 -15 -15 -17 30 23 3800 23 86 760 0.90 850 160 1.2 raklertod 180 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15	Trontot (City Hall) 90 -18 -20 31 23 3520 25 97 720 0.86 820 160 0.9 0.4 renton 80 -22 -24 29 23 4110 23 97 760 0.89 850 160 1.6 0.4 rout Creek 330 -27 -29 29 22 5100 25 103 780 0.92 975 120 2.7 0.4 xbridge 275 -22 -24 30 23 4240 25 103 700 0.82 850 140 2.4 0.4 aughan (Woodbridge) 165 -20 -22 31 24 4100 26 113 700 0.80 800 140 1.1 0.4 ittoria 215 -15 -17 30 24 3680 25 113 880 0.99 950 160 1.3 0.4 Zalkerton 275 -18 -20 30 22 4300 28 103 790 0.92 1025 160 2.7 0.4 Zalkerton 275 -18 -21 29 23 4200 28 119 780 0.89 925 160 2.7 0.4 Zalkerton 330 -19 -21 29 23 4200 28 119 780 0.89 925 160 1.9 0.4 Zalkerton 270 -34 -36 26 21 5840 20 93 950 160 1.9 0.4 Zalkerton 270 -34 -36 26 21 5840 20 93 950 160 1.9 0.4 Zalkerton 270 -34 -36 26 21 5840 20 93 950 160 1.9 0.4 Zalkerton 270 -34 -36 26 21 5840 20 93 950 160 1.9 0.4 Zalkerton 270 -34 -36 26 21 5840 20 93 950 160 1.9 0.4 Zalkerton 270 -34 -36 26 21 5840 20 93 950 160 1.9 0.4 Zalkerton 270 -34 -36 26 21 5840 20 93 950 160 1.9 0.4 Zalkerton 270 -34 -36 26 21 5840 20 93 950 950 160 1.9 0.4 Zalkerton 270 -34 -36 26 21 5840 20 93 950 950 160 1.9 0.4 Zalkerton 270 -34 -36 26 21 5840 20 93 950 950 160 1.9 0.4 Zalkerton 270 -34 -36 26 21 5840 20 93 950 950 160 1.9 0.4 Zalkerton 270 -34 -36 26 21 5850 23 86 760 0.90 850 160 1.9 0.4 Zalkerton 270 -34 -35 950 950 950 950 950 950 950 950 950 95	Trontot (City Hall) 90 -18 -20 31 23 3520 25 97 720 0.86 820 160 0.9 0.4 0.34 renton 80 -22 -24 29 23 4110 23 97 760 0.89 850 160 1.6 0.4 0.36 rout Creek 330 -27 -29 29 22 5100 25 103 760 0.89 850 160 1.6 0.4 0.36 rout Creek 330 -27 -22 31 24 100 25 103 760 0.82 850 140 2.4 0.4 0.33 aughan (Woodbridge) 165 -20 -22 31 24 4100 26 113 700 0.80 800 140 1.1 0.4 0.34 littoria 215 -15 -17 30 24 3680 25 113 880 0.99 950 160 1.3 0.4 0.36 falkerton 275 -18 20 30 22 4400 25 103 700 0.80 800 140 1.1 0.4 0.34 halkerton 275 -18 20 30 22 4400 25 113 880 0.99 950 160 1.3 0.4 0.36 falkerton 275 -18 20 30 22 4400 28 103 790 0.92 1025 160 2.7 0.4 0.39 fallaceburg 180 -16 -18 31 24 3600 28 97 760 0.87 825 180 0.9 0.4 0.35 falkerton 330 -19 -21 29 23 4200 28 119 780 0.89 955 160 2.0 0.4 0.29 fallaceburg 290 -34 -36 26 21 5840 20 93 725 0.93 950 160 1.3 0.4 0.36 falkerton 25 -17 30 23 3670 23 103 840 0.96 975 160 2.0 0.4 0.39 felland 180 -15 -17 30 23 3670 23 103 840 0.95 900 180 3.4 0.4 0.36 falkerton 25 -18 31 24 3700 28 103 840 0.95 900 180 1.3 0.4 0.36 falkerton 25 -18 31 24 3700 28 103 840 0.95 900 180 1.3 0.4 0.36 falkerton 25 -18 31 24 3700 28 103 840 0.95 900 180 1.3 0.4 0.36 falkerton 25 -18 31 24 3700 28 103 840 0.95 900 180 1.3 0.4 0.36 falkerton 25 -18 31 24 3700 28 103 840 0.95 900 180 1.2 0.4 0.35 falket Lorne 25 -18 31 24 3700 28 103 840 0.95 900 180 1.3 0.4 0.36 falket Lorne 25 -18 31 24 3700 28 103 840 0.95 900 180 1.2 0.4 0.36 falket Lorne 25 -18 31 24 3700 28 103 840 0.95 900 180 1.2 0.4 0.36 falket Lorne 25 -18 31 24 3700 28 103 840 0.95 900 180 1.2 0.4 0.36 falket Lorne 25 -18 31 24 3700 28 103 840 0.95 900 180 1.2 0.4 0.36 falket Lorne 25 -18 31 24 3700 28 103 840 0.95 900 180 1.2 0.4 0.36 falket Lorne 25 -18 31 24 3700 28 103 840 0.95 900 180 1.2 0.4 0.36 falket Lorne 25 -18 31 24 3700 28 103 840 0.95 900 180 1.2 0.4 0.36 falket Lorne 25 -18 31 24 3700 28 103 840 0.95 900 180 1.2 0.4 0.36 falket Lorne 25 -18 31 24 3700 28 103 840 0.95 900 180 1.2 0.4 0.36 falket Lorne 25 -18 31 24 3700 28 103 840 0.95 900 180

	F	Des	sign Te	mpera		De- gree-	15 Min	One Day	Ann.	N.A	Ann.	Driv- ing Rain	Snow kPa,		Hourly Pressu	
Province and Location	Elev., m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Min. Rain, mm	Rain, 1/50, mm	Rain, mm	Moist. Index	Tot. Ppn., mm	Wind Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
Brome	210	-25	-27	29	23	4730	23	96	990	1.09	1240	160	2.5	0.4	0.29	0.37
Brossard	15	-24	-26	30	23	4420	23	91	800	0.90	1025	180	2.4	0.4	0.33	0.42
Buckingham	130	-26	-28	30	23	4880	23	91	810	0.94	990	160	2.6	0.4	0.31	0.40
Campbell's Bay	115	-28	-30	30	23	4900	23	96	700	0.83	850	140	2.6	0.4	0.25	0.32
Chambly	20	-24	-26	30	23	4450	23	91	850	0.96	1000	160	2.3	0.4	0.31	0.40
Coaticook	295	-25	-27	28	22	4750	23	96	860	1.00	1060	160	2.3	0.6	0.27	0.35
Contrecoeur	10	-25	- 27	30	23	4500	20	102	810	0.94	1000	180	2.8	0.4	0.33	0.43
Cowansville	120	-25	- 27	29	23	4540	23	91	940	1.04	1150	160	2.3	0.4	0.32	0.41
Deux-Montagnes	25	-25	- 27	29	23	4440	23	96	820	0.92	1025	160	2.4	0.4	0.29	0.37
Dolbeau	120	-32	-34	28	22	6250	22	91	670	0.85	900	140	3.5	0.3	0.27	0.35
Drummondville	85	-26	-28	30	23	4700	22	107	870	0.98	1075	180	2.5	0.4	0.27	0.35
Farnham	60	-24	-26	29	23	4500	23	96	910	1.01	1050	180	2.5	0.4	0.29	0.37
Fort-Coulonge	110	-28	-30	30	23	4950	23	96	720	0.86	900	100	2.5	0.4	0.25	0.32
Gagnon	545	-34	-36	24	19	7600	17	80	580	0.89	925	140	4.6	0.4	0.30	0.39
Gaspé	55	-25	-26	26	20	5500	19	118	760	0.96	1100	300	4.3	0.6	0.37	0.48
Gatineau	95	-25	-28	30	23	4600	23	91	790	0.92	950	160	2.5	0.4	0.32	0.41
Gracefield	175	-28	-31	30	23	5080	23	96	700	0.85	950	140	2.6	0.4	0.25	0.32
Granby	120	-25	- 27	29	23	4500	23	102	940	1.04	1175	160	2.3	0.4	0.27	0.35
Harrington-Harbour	30	-27	-29	19	16	6150	15	96	900	1.18	1150	300	4.9	0.6	0.56	0.72
Havre-St-Pierre	5	-27	-29	22	18	6100	15	96	780	1.05	1125	300	4.1	0.6	0.48	0.63
Hemmingford	75	-24	-26	30	23	4380	23	91	770	0.89	1025	160	2.4	0.4	0.31	0.40
Hull	65	-25	-28	30	23	4550	23	91	730	0.84	900	160	2.4	0.4	0.32	0.41
Iberville	35	-24	-26	29	23	4450	23	91	880	0.99	1010	160	2.2	0.4	0.32	0.41
Inukjuak	5	-36	-38	21	15	9150	9	54	270	0.88	420	240	4.1	0.2	0.47	0.60
Joliette	45	-26	-28	29	23	4720	21	102	790	0.93	1000	160	3.1	0.4	0.28	0.36
Kuujjuaq	25	-37	-39	24	17	8550	9	54	280	0.80	525	260	4.8	0.2	0.47	0.60
Kuujjuarapik	20	-36	-38	25	17	7990	12	80	410	0.85	610	180	4.2	0.3	0.43	0.55
La Pocatière	55	-24	-26	28	22	5160	18	102	675	0.85	965	180	3.2	0.6	0.39	0.50
La-Malbaie	25	-26	-28	28	21	5400	18	102	640	0.82	900	180	3.1	0.6	0.37	0.48
La-Tuque	165	-30	-32	29	22	5500	23	96	720	0.87	930	160	3.4	0.4	0.27	0.35
Lac-Mégantic	420	-27	-29	27	22	5180	23	91	790	0.94	1025	160	3.2	0.6	0.27	0.35
Lachute	65	-26	-28	29	23	4640	23	96	910	1.04	1075	160	2.4	0.4	0.31	0.40
Lennoxville	155	-28	-30	29	22	4700	23	96	850	0.98	1100	160	2.1	0.6	0.25	0.32
Léry	30	-24	-26	29	23	4420	23	91	800	0.91	950	180	2.3	0.4	0.33	0.42
Loretteville	100	-26	-29	28	22	5200	20	102	980	1.09	1225	200	3.7	0.6	0.32	0.41
Louiseville	15	-25	-28	29	23	4900	20	102	800	0.93	1025	160	2.9	0.4	0.33	0.43
Magog	215	-26	-28	29	23	4730	23	96	860	0.99	1125	160	2.3	0.4	0.27	0.35
Malartic	325	-33	-36	29	21	6200	20	86	640	0.82	900	100	3.3	0.3	0.25	0.32
Maniwaki	180	-30	-32	29	22	5280	23	96	700	0.86	900	100	2.4	0.4	0.24	0.31
Masson	50	-26	-28	30	23	4610	23	91	790	0.92	975	160	2.4	0.4	0.31	0.40

			Des	ign Te	mpera	ture	De-		One				Driv-	Snow	Load,	Hourly	Wind
		Elev.,	Janı	uary	July 2	2.5%	gree-	15 Min.	Day	Ann.	Moist.	Ann. Tot.	ing Rain Wind	kPa,	1/50	Pressur	es, kPa
	Province and Location	m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Rain, mm	Rain, 1/50, mm	Rain, mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
Ī	Matane	5	-24	-26	24	20	5510	18	91	640	0.88	1050	220	3.7	0.4	0.47	0.60
	Mont-Joli	90	-24	-26	26	21	5370	18	91	610	0.84	920	220	4.1	0.4	0.40	0.52
	Mont-Laurier	225	-29	-32	29	22	5320	24	102	790	0.93	1000	160	2.6	0.4	0.23	0.30
	Montmagny	10	- 25	-28	28	22	5090	20	102	880	1.01	1090	180	2.9	0.6	0.36	0.47
	Montréal Region																
	Beaconsfield	25	- 24	-26	30	23	4440	23	91	780	0.89	950	180	2.3	0.4	0.33	0.42
	Dorval	25	-24	-26	30	23	4400	23	91	760	0.85	940	180	2.4	0.4	0.33	0.42
	Laval	35	-24	-26	29	23	4500	23	96	830	0.93	1025	160	2.6	0.4	0.33	0.42
	Montréal (City Hall)	20	-23	-26	30	23	4200	23	96	830	0.93	1025	180	2.6	0.4	0.33	0.42
	Montréal-Est	25	-23	-26	30	23	4470	23	96	830	0.93	1025	180	2.7	0.4	0.33	0.42
ļ	Montréal-Nord	20	-24	-26	30	23	4470	23	96	830	0.93	1025	160	2.6	0.4	0.33	0.42
	Outremont	105	-23	-26	30	23	4300	23	96	820	0.91	1025	180	2.8	0.4	0.33	0.42
	Pierrefonds	25	- 24	-26	30	23	4430	23	96	800	0.90	960	180	2.4	0.4	0.33	0.42
	St-Lambert	15	-23	-26	30	23	4400	23	96	810	0.91	1050	160	2.5	0.4	0.33	0.42
	St-Laurent	45	-23	-26	30	23	4270	23	96	790	0.89	950	160	2.5	0.4	0.33	0.42
	Ste-Anne-de- Bellevue	35	-24	-26	29	23	4460	23	96	780	0.89	960	180	2.3	0.4	0.33	0.42
	Verdun	20	-23	-26	30	23	4200	23	91	780	0.88	1025	180	2.5	0.4	0.33	0.42
	Nicolet (Gentilly)	15	- 25	-28	29	23	4900	20	107	860	0.98	1025	160	2.8	0.4	0.33	0.42
	Nitchequon	545	-39	-41	23	19	8100	15	70	500	0.89	825	140	3.5	0.3	0.29	0.37
	Noranda	305	-33	-36	29	21	6050	20	91	650	0.82	875	100	3.2	0.3	0.27	0.35
	Percé	5	-21	-24	25	19	5400	16	107	1000	1.18	1300	300	3.8	0.6	0.56	0.72
	Pincourt	25	- 24	-26	29	23	4480	23	96	780	0.88	950	180	2.3	0.4	0.33	0.42
/	Plessisville	145	-26	-28	29	23	5100	21	107	890	1.00	1150	180	2.8	0.6	0.27	0.35
	Port-Cartier	20	-28	-30	25	19	6060	15	106	730	0.99	1125	300	4.1	0.4	0.42	0.54
	Puvirnituq	5	-36	-38	23	16	9200	7	54	210	0.87	375	240	4.5	0.2	0.47	0.60
	Québec City Region																
	Ancienne- Lorette	35	- 25	-28	28	23	5130	20	102	940	1.06	1200	200	3.4	0.6	0.32	0.41
	Lévis	50	- 25	-28	28	22	5050	20	107	920	1.04	1200	160	3.3	0.6	0.32	0.41
	Québec	120	- 25	-28	28	22	5080	20	107	925	1.04	1210	200	3.6	0.6	0.32	0.41
	Sillery	10	- 25	-28	28	23	5070	20	107	930	1.05	1200	200	3.1	0.6	0.32	0.41
	Ste-Foy	115	- 25	-28	28	23	5100	20	107	940	1.06	1200	180	3.7	0.6	0.32	0.41
ļ	Richmond	150	- 25	-27	29	22	4700	23	96	870	0.98	1060	160	2.4	0.6	0.25	0.32
	Rimouski	30	-25	-27	26	20	5300	18	91	640	0.84	890	200	3.8	0.4	0.40	0.52
	Rivière-du-Loup	55	- 25	- 27	26	21	5380	18	91	660	0.84	900	180	3.5	0.6	0.39	0.50
	Roberval	100	-31	-33	28	21	5750	22	91	590	0.77	910	140	3.5	0.3	0.27	0.35
	Rock-Island	160	- 25	- 27	29	23	4850	23	91	900	1.03	1125	160	2.0	0.4	0.27	0.35
ļ	Rosemère	25	-24	- 26	29	23	4550	23	96	840	0.97	1050	160	2.6	0.4	0.31	0.40
	Rouyn	300	-33	-36	29	21	6050	20	91	650	0.82	900	100	3.1	0.3	0.27	0.35
	Saguenay	10	-30	-32	28	22	5700	18	86	710	0.88	975	140	2.7	0.4	0.28	0.36

0.43	
0.35	
0.50	
0.42	
0.40	
0.35	C
0.37	
0.33	NΙ
0.42	
0.42	G
0.35	
0.41	
0.52	
0.32	
0.40	
0.35	
0.40	

		Des Janu		mpera Julv	ture 2,5%	De- gree-	15	One Day	Ann.		Ann.	Driv- ing Rain	Snow kPa,	Load, 1/50		Wind res, kPa
Province and Location	Elev., m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Min. Rain, mm	Rain, 1/50, mm	Rain, mm	Moist. Index	Tot. Ppn., mm	Wind Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
Saguenay (Bagotville)	5	-31	-33	28	21	5700	18	86	690	0.86	925	160	2.7	0.4	0.29	0.38
Saguenay (Jonquière)	135	-30	-32	28	22	5650	18	86	710	0.87	925	160	3.1	0.4	0.27	0.35
Saguenay (Kenogami)	140	-30	-32	28	22	5650	18	86	690	0.86	925	160	3.1	0.4	0.27	0.35
Saint-Eustache	35	-25	-27	29	23	4500	23	96	820	0.92	1025	160	2.4	0.4	0.29	0.37
Saint-Jean-sur- Richelieu	35	- 24	-26	29	23	4450	23	91	880	0.99	1010	180	2.2	0.4	0.32	0.41
Salaberry-de- Valleyfield	50	- 23	-25	29	23	4400	23	96	760	0.87	900	180	2.3	0.4	0.33	0.42
Schefferville	550	-37	-39	24	16	8550	13	64	410	0.81	800	180	4.5	0.3	0.33	0.42
Senneterre	310	-34	-36	29	21	6180	22	91	740	0.91	925	100	3.3	0.3	0.25	0.32
Sept-Îles	5	-29	-31	24	18	6200	15	106	760	1.01	1125	300	4.1	0.4	0.42	0.54
Shawinigan	60	-26	-29	29	23	5050	22	102	820	0.96	1050	180	3.1	0.4	0.27	0.35
Shawville	170	-27	-30	30	23	4880	23	96	670	0.79	880	160	2.8	0.4	0.27	0.35
Sherbrooke	185	-28	-30	29	23	4700	23	96	900	1.03	1100	160	2.2	0.6	0.25	0.32
Sorel	10	-25	-27	29	23	4550	20	102	800	0.93	975	180	2.8	0.4	0.33	0.43
St-Félicien	105	-32	-34	28	22	5850	22	91	570	0.76	900	140	3.5	0.3	0.27	0.35
St-Georges-de- Cacouna	35	-25	-27	26	21	5400	18	91	660	0.85	925	180	3.2	0.6	0.39	0.50
St-Hubert	25	-24	-26	30	23	4490	23	91	820	0.92	1020	180	2.5	0.4	0.33	0.42
Saint-Hubert-de- Rivière-du-Loup	310	-26	-28	26	21	5520	22	91	740	0.90	1025	180	4.4	0.6	0.31	0.40
St-Hyacinthe	35	-24	-27	30	23	4500	21	91	840	0.95	1030	160	2.3	0.4	0.27	0.35
St-Jérôme	95	-26	-28	29	23	4820	23	96	830	0.97	1025	160	2.7	0.4	0.29	0.37
St-Jovite	230	-29	-31	28	22	5250	23	96	810	0.99	1025	160	2.8	0.4	0.25	0.33
St-Lazare-Hudson	60	-24	-26	30	23	4520	23	96	750	0.85	950	180	2.3	0.4	0.33	0.42
St-Nicolas	65	-25	-28	28	22	4990	20	102	890	1.01	1200	200	3.5	0.6	0.33	0.42
Ste-Agathe-des- Monts	360	- 28	-30	28	22	5390	23	96	820	1.00	1170	140	3.4	0.4	0.27	0.35
Sutton	185	-25	-27	29	23	4600	23	96	990	1.09	1260	160	2.4	0.4	0.32	0.41
Tadoussac	65	-26	-28	27	21	5450	18	96	700	0.88	1000	180	3.7	0.4	0.40	0.52
Témiscaming	240	-30	-32	30	22	5020	23	96	730	0.88	940	100	2.5	0.4	0.25	0.32
Terrebonne	20	-25	-27	29	23	4500	23	96	830	0.93	1025	160	2.6	0.4	0.31	0.40
Thetford Mines	330	-26	-28	28	22	5120	22	107	950	1.06	1230	160	3.5	0.6	0.27	0.35
Thurso	50	-26	-28	30	23	4820	23	91	800	0.93	950	160	2.4	0.4	0.31	0.40
Trois-Rivières	25	-25	-28	29	23	4900	20	107	860	0.98	1050	180	2.8	0.4	0.33	0.43
Val-d'Or	310	-33	-36	29	21	6180	20	86	640	0.83	925	100	3.4	0.3	0.25	0.32
Varennes	15	-24	-26	30	23	4500	23	96	810	0.94	1000	160	2.6	0.4	0.31	0.40
Verchères	15	-24	-26	30	23	4450	23	96	810	0.94	1000	160	2.7	0.4	0.33	0.43
Victoriaville	125	-26	-28	29	23	4900	21	102	850	0.97	1100	180	2.6	0.6	0.27	0.35
Ville-Marie	200	-31	-34	30	22	5550	23	96	630	0.80	825	120	2.3	0.4	0.31	0.40
Wakefield	120	-27	-30	30	23	4820	23	91	780	0.91	1020	160	2.4	0.4	0.27	0.34

			ign Te			De-	15	One			Ann.	Driv- ing Rain	Snow			Wind
Province and Location	Elev.,	Jani	uary	July	2.5%	gree- Days	Min.	Day Rain,	Ann. Rain,	Moist.	Tot.	Wind	kPa,	1/50	Pressur	es, kPa
Trovince and Essation	m	2.5% °C	1% ℃	Dry °C	Wet °C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	Ss	S r	1/10	1/50
Waterloo	205	-25	-27	29	23	4650	23	96	980	1.08	1250	160	2.5	0.4	0.27	0.35
Windsor	150	-25	-27	29	23	4700	23	96	930	1.04	1075	160	2.3	0.4	0.25	0.32
New Brunswick																
Alma	5	-21	-23	26	20	4500	18	144	1175	1.32	1450	260	2.6	0.6	0.37	0.48
Bathurst	10	-23	-26	30	22	5020	20	106	775	0.94	1020	180	4.1	0.6	0.37	0.48
Campbellton	30	-26	-28	29	22	5500	20	107	725	0.93	1025	180	4.3	0.4	0.35	0.45
Edmundston	160	-27	-29	28	22	5320	23	91	750	0.94	1000	160	3.4	0.6	0.29	0.38
Fredericton	15	-24	-27	29	22	4670	22	112	900	1.02	1100	160	3.1	0.6	0.29	0.38
Gagetown	20	-24	-26	29	22	4460	20	112	900	1.04	1125	180	2.8	0.6	0.31	0.40
Grand Falls	115	-27	-30	28	22	5300	23	107	850	1.00	1100	160	3.6	0.6	0.29	0.38
Miramichi	5	-24	-26	30	22	4950	20	96	825	0.97	1050	200	3.4	0.6	0.32	0.41
Moncton	20	-23	-25	28	21	4680	20	112	850	1.02	1175	220	3.0	0.6	0.39	0.50
Oromocto	20	-24	-26	29	22	4650	22	112	900	1.02	1110	160	3.0	0.6	0.30	0.39
Sackville	15	-22	-24	27	21	4590	18	112	975	1.14	1175	220	2.5	0.6	0.38	0.49
Saint Andrews	35	-22	-24	25	20	4680	19	123	1000	1.15	1200	220	2.8	0.6	0.35	0.45
Saint George	35	-21	-23	25	20	4680	18	123	1000	1.15	1200	220	2.8	0.6	0.35	0.45
Saint John	5	-22	-24	25	20	4570	18	139	1100	1.27	1425	260	2.3	0.6	0.41	0.53
Shippagan	5	-22	-24	28	21	4930	18	96	800	0.98	1050	260	3.4	0.6	0.48	0.63
St. Stephen	20	-24	-26	28	22	4700	20	123	1000	1.15	1160	180	2.9	0.6	0.33	0.42
Woodstock	60	-26	-29	30	22	4910	22	107	875	0.99	1100	160	3.1	0.6	0.29	0.37
Nova Scotia																
Amherst	25	-21	-24	27	21	4500	18	118	950	1.12	1150	220	2.4	0.6	0.37	0.48
Antigonish	10	-17	-20	27	21	4510	15	123	1100	1.25	1250	240	2.3	0.6	0.42	0.54
Bridgewater	10	-15	-17	27	20	4140	16	144	1300	1.45	1475	260	1.9	0.6	0.43	0.55
Canso	5	-13	-15	25	20	4400	15	123	1325	1.48	1400	260	1.7	0.6	0.48	0.61
Debert	45	-21	-24	27	21	4500	18	118	1000	1.16	1200	240	2.1	0.6	0.37	0.48
Digby	35	-15	-17	25	20	4020	15	130	1100	1.27	1275	260	2.2	0.6	0.43	0.55
Greenwood (CFB)	28	-18	-20	29	22	4140	16	118	925	1.05	1100	280	2.7	0.6	0.42	0.54
Halifax Region																
Dartmouth	10	-16	-18	26	20	4100	18	144	1250	1.40	1400	280	1.6	0.6	0.45	0.58
Halifax	55	-16	-18	26	20	4000	17	150	1350	1.49	1500	280	1.9	0.6	0.45	0.58
Kentville	25	-18	-20	28	21	4130	17	118	950	1.09	1200	260	2.6	0.6	0.42	0.54
Liverpool	20	-16	-18	27	20	3990	16	150	1325	1.48	1425	280	1.7	0.6	0.48	0.61
Lockeport	5	-14	-16	25	20	4000	18	139	1250	1.42	1450	280	1.4	0.6	0.47	0.60
Louisburg	5	-15	-17	26	20	4530	15	118	1300	1.46	1500	300	2.1	0.7	0.50	0.65
Lunenburg	25	-15	-17	26	20	4140	16	144	1300	1.45	1450	260	1.9	0.6	0.48	0.61
New Glasgow	30	-19	-21	27	21	4320	15	135	975	1.13	1200	260	2.2	0.6	0.43	0.55
North Sydney	20	-16	-19	27	21	4500	15	123	1200	1.36	1475	300	2.4	0.6	0.46	0.59
Pictou	25	-19	-21	27	21	4310	15	107	950	1.11	1175	260	2.2	0.6	0.43	0.55
Port Hawkesbury	40	-17	-19	27	21	4500	15	128	1325	1.48	1450	260	2.1	0.6	0.57	0.74

S
N
G

Province and Location		Des Janı	ign Te uarv	mpera		De- gree-	15	One Day	Ann.		Ann.	Driv- ing Rain	Snow kPa,	,	Hourly Pressur	
Province and Location	Elev., m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Min. Rain, mm	Rain, 1/50, mm	Rain, mm	Moist. Index	Tot. Ppn., mm	Wind Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
Springhill	185	-20	-23	27	21	4540	18	118	1075	1.22	1175	220	3.1	0.6	0.37	0.48
Stewiacke	25	-20	-22	27	21	4400	18	128	1050	1.20	1250	240	1.8	0.6	0.39	0.50
Sydney	5	-16	-19	27	21	4530	15	123	1200	1.36	1475	300	2.3	0.6	0.46	0.59
Tatamagouche	25	-20	-23	27	21	4380	18	118	875	1.05	1150	260	2.2	0.6	0.43	0.55
Truro	25	-20	-22	27	21	4500	18	118	1000	1.16	1175	240	2.0	0.6	0.37	0.48
Wolfville	35	-19	-21	28	21	4140	17	118	975	1.13	1175	260	2.6	0.6	0.42	0.54
Yarmouth	10	-14	-16	22	19	3990	19	135	1125	1.32	1260	280	1.8	0.6	0.43	0.56
Prince Edward Island																
Charlottetown	5	-20	-22	26	21	4460	16	107	900	1.09	1150	350	2.7	0.6	0.43	0.56
Souris	5	-19	-21	27	21	4550	15	112	950	1.14	1130	350	2.7	0.6	0.45	0.58
Summerside	10	-20	-22	27	21	4600	16	112	825	1.03	1060	350	3.1	0.6	0.47	0.60
Tignish	10	-20	-22	27	21	4770	16	96	800	1.01	1100	350	3.2	0.6	0.51	0.66
Newfoundland																
Argentia	15	-12	-14	21	18	4600	15	107	1250	1.47	1400	400	2.4	0.7	0.58	0.75
Bonavista	15	-14	-16	24	19	5000	18	96	825	1.11	1010	400	3.1	0.6	0.65	0.84
Buchans	255	-24	-27	27	20	5250	13	107	850	1.04	1125	200	4.7	0.6	0.47	0.60
Cape Harrison	5	- 29	-31	26	16	6900	10	106	475	0.94	950	350	6.3	0.4	0.47	0.60
Cape Race	5	-11	-13	19	18	4900	18	130	1425	1.66	1550	400	2.3	0.7	0.81	1.05
Channel-Port aux Basques	5	-13	-15	19	18	5000	13	123	1175	1.43	1520	450	3.6	0.7	0.60	0.78
Corner Brook	35	-16	-18	26	20	4760	13	91	875	1.08	1190	300	3.7	0.6	0.43	0.55
Gander	125	-18	-20	27	20	5110	18	91	775	1.01	1180	280	3.7	0.6	0.47	0.60
Grand Bank	5	-14	-15	20	18	4550	15	123	1350	1.58	1525	400	2.4	0.7	0.57	0.74
Grand Falls	60	-26	-29	27	20	5020	15	86	775	0.97	1030	240	3.4	0.6	0.47	0.60
Happy Valley-Goose Bay	15	-31	-32	27	19	6670	18	80	575	0.83	960	160	5.3	0.4	0.33	0.42
Labrador City	550	-36	-38	24	17	7710	15	70	500	0.82	880	140	4.8	0.3	0.31	0.40
St. Anthony	10	- 25	-27	22	18	6440	13	86	800	1.07	1280	450	6.1	0.6	0.67	0.87
St. John's	65	-15	-16	24	20	4800	18	118	1200	1.41	1575	400	2.9	0.7	0.60	0.78
Stephenville	25	-16	-18	24	19	4850	14	102	1000	1.19	1275	350	4.1	0.6	0.45	0.58
Twin Falls	425	- 35	-37	24	17	7790	15	70	500	0.85	950	120	4.8	0.4	0.31	0.40
Wabana	75	-15	-17	24	20	4750	18	112	1125	1.34	1500	400	3.0	0.7	0.58	0.75
Wabush	550	-36	-38	24	17	7710	15	70	500	0.82	880	140	4.8	0.3	0.31	0.40
Yukon																
Aishihik	920	-44	-46	23	15	7500	8	43	190	0.57	275	40	1.9	0.1	0.29	0.38
Dawson	330	-50	- 51	26	16	8120	10	49	200	0.57	350	40	2.9	0.1	0.24	0.31
Destruction Bay	815	- 43	- 45	23	14	7800	8	49	190	0.62	300	80	1.9	0.1	0.47	0.60
Faro	670	-46	-47	25	16	7300	10	33	215	0.58	315	40	2.3	0.1	0.27	0.35
Haines Junction	600	-45	- 47	24	14	7100	8	51	145	0.56	315	180	2.2	0.1	0.26	0.34
Snag	595	-51	- 53	23	16	8300	8	59	290	0.57	350	40	2.2	0.1	0.24	0.31
Teslin	690	- 42	-44	24	15	6770	10	38	200	0.51	340	40	3.0	0.1	0.26	0.34

Z
G

				ign Te			De-	15	One			Ann.	Driv- ing Rain	Snow		Hourly	
	Province and Location	Elev.,	Janı	uary	July	2.5% I	gree- Days	Min.	Day Rain,	Ann. Rain,	Moist.	Tot.	Wind	kPa,	1/50	Pressur	es, kPa
	Tovince and Location	m	2.5% °C	1% °C	Dry °C	Wet °C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S _s	S _r	1/10	1/50
	Watson Lake	685	-46	- 48	26	16	7470	10	54	250	0.55	410	60	3.2	0.1	0.27	0.35
	Whitehorse	655	-41	-43	25	15	6580	8	43	170	0.49	275	40	2.0	0.1	0.29	0.38
Nor	thwest Territories																
	Aklavik	5	-42	-44	26	17	9600	6	49	115	0.67	250	60	2.8	0.1	0.37	0.48
	Echo Bay / Port Radium	195	- 42	-44	22	16	9300	8	60	160	0.70	250	80	3.0	0.1	0.41	0.53
	Fort Good Hope	100	-43	- 45	28	18	8700	9	60	140	0.60	280	80	2.9	0.1	0.34	0.44
	Fort McPherson	25	-44	-46	26	17	9150	6	50	145	0.67	315	60	3.2	0.1	0.31	0.40
	Fort Providence	150	-40	-43	28	18	7620	10	71	210	0.56	350	100	2.4	0.1	0.27	0.35
	Fort Resolution	160	-40	- 42	26	18	7750	10	60	175	0.61	300	140	2.3	0.1	0.30	0.39
	Fort Simpson	120	-42	-44	28	19	7660	12	76	225	0.56	360	80	2.3	0.1	0.30	0.39
	Fort Smith	205	-41	-43	28	19	7300	10	65	250	0.56	350	80	2.3	0.2	0.30	0.39
	Hay River	45	-38	-41	27	18	7550	10	60	200	0.62	150	140	2.4	0.1	0.27	0.35
	Holman/ Ulukhaqtuuq	10	-39	-41	18	12	10700	3	44	80	0.93	250	120	2.1	0.1	0.66	0.86
	Inuvik	45	-43	- 45	26	17	9600	6	49	115	0.67	425	60	3.1	0.1	0.37	0.48
	Mould Bay	5	-44	- 46	11	8	12900	3	33	25	0.94	100	140	1.5	0.1	0.45	0.58
	Norman Wells	65	-43	-45	28	18	8510	9	60	165	0.57	320	80	3.0	0.1	0.34	0.44
	Rae-Edzo	160	- 42	-44	25	17	8300	10	60	175	0.59	275	80	2.3	0.1	0.36	0.47
	Tungsten	1340	-49	-51	26	16	7700	10	44	315	0.75	640	40	4.3	0.1	0.34	0.44
	Wrigley	80	-42	-44	28	18	8050	10	54	220	0.58	350	80	2.8	0.1	0.30	0.39
	Yellowknife	160	-41	-44	25	17	8170	10	60	175	0.58	275	100	2.2	0.1	0.36	0.47
Nur	navut																
	Alert	5	-43	-44	13	8	13030	3	22	20	0.95	150	100	2.6	0.1	0.58	0.75
	Arctic Bay	15	-42	-44	14	10	11900	3	38	60	0.90	150	160	2.4	0.1	0.43	0.55
	Arviat / Eskimo Point	5	-40	-41	22	16	9850	8	65	225	0.85	300	240	3.0	0.2	0.45	0.58
	Baker Lake	5	-42	-44	23	15	10700	5	55	160	0.84	260	180	3.4	0.2	0.42	0.54
	Cambridge Bay/Iqaluktuuttiaq	15	-41	-44	18	13	11670	4	38	70	0.89	140	100	1.9	0.1	0.42	0.54
	Chesterfield Inlet/Igluligaarjuk	10	-40	-41	20	14	10500	5	60	175	0.88	270	240	3.6	0.2	0.43	0.56
	Clyde River /Kanngiqtugaapik	5	- 40	- 42	14	10	11300	5	44	55	0.90	225	220	4.2	0.2	0.56	0.72
	Coppermine (Kugluktuk)	10	-41	-43	23	16	10300	6	65	140	0.84	150	80	3.4	0.1	0.36	0.46
	Coral Harbour /Salliq	15	-41	- 42	20	14	10720	5	65	150	0.87	280	200	3.8	0.2	0.54	0.69
	Eureka	5	-47	-48	12	8	13500	3	27	25	0.95	70	100	1.6	0.1	0.43	0.55
	Iqaluit	45	- 40	-41	17	12	9980	5	58	200	0.86	433	200	2.9	0.2	0.45	0.58
	Isachsen	10	- 46	- 48	12	9	13600	3	27	25	0.95	75	140	1.9	0.1	0.47	0.60
	Nottingham Island	30	-37	-39	16	13	10000	5	54	175	0.88	325	200	4.7	0.2	0.60	0.78
L	Rankin Inlet (Kangiqiniq)	10	-41	- 42	21	15	10500	5	65	180	0.87	250	240	3.0	0.2	0.47	0.60

		Des	ign Te	mpera	ture	De-		One				Driv-	Snow	Load,	Hourly	Wind
	Elev.,	Janı	uary	July	2.5%	gree-	15 Min.	Day	Ann.	Moist.	Ann. Tot.	ing Rain Wind	kPa,	1/50	Pressur	es, kPa
Province and Location	m	2.5% °C	1% ℃	Dry °C	Wet °C	Days Below 18°C	Rain, mm	Rain, 1/50, mm	Rain, mm		Ppn., mm	Pres- sures, Pa, 1/5	Ss	Sr	1/10	1/50
Resolute	25	-42	- 43	11	9	12360	3	27	50	0.93	140	180	2.0	0.1	0.54	0.69
Resolution Island	5	-32	-34	12	10	9000	5	71	240	0.89	550	200	5.5	0.2	0.95	1.23

INSULATING CONCRETE FORMS MANUFACTURERS ASSOCIATION ICF-MA.ORG

Table C-3 (Continued)

Province and Location				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Chilliwack	0.539	0.448	0.277	0.174	0.062	0.021	0.242	0.347
Comox	0.685	0.662	0.455	0.292	0.102	0.036	0.317	0.538
Courtenay	0.692	0.670	0.461	0.296	0.104	0.037	0.321	0.545
Cranbrook	0.170	0.138	0.089	0.047	0.018	0.0062	0.075	0.085
Crescent Valley	0.130	0.101	0.073	0.047	0.021	0.0067	0.058	0.082
Crofton	1.13	1.04	0.598	0.358	0.111	0.039	0.491	0.754
Dawson Creek	0.150	0.098	0.055	0.026	0.0080	0.0032	0.080	0.059
Dease Lake	0.103	0.091	0.074	0.049	0.017	0.0067	0.044	0.078
Dog Creek	0.172	0.140	0.102	0.071	0.032	0.0098	0.079	0.140
Duncan	1.17	1.09	0.631	0.378	0.118	0.042	0.513	0.786
Elko	0.217	0.174	0.108	0.053	0.019	0.0066	0.098	0.101
Fernie	0.234	0.175	0.106	0.052	0.019	0.0065	0.106	0.10
Fort Nelson	0.141	0.103	0.068	0.036	0.012	0.0049	0.081	0.07
Fort St. John	0.145	0.094	0.053	0.026	0.0077	0.0032	0.079	0.058
Glacier	0.206	0.142	0.081	0.044	0.018	0.0058	0.093	0.083
Gold River	1.01	0.988	0.664	0.413	0.135	0.048	0.466	0.743
Golden	0.263	0.174	0.094	0.046	0.017	0.0056	0.120	0.09
Grand Forks	0.133	0.108	0.082	0.056	0.026	0.0079	0.061	0.10
Greenwood	0.136	0.113	0.085	0.059	0.027	0.0082	0.063	0.10
Hope	0.363	0.304	0.201	0.131	0.051	0.017	0.167	0.25
Jordan River	1.40	1.31	0.817	0.495	0.157	0.055	0.639	0.923
Kamloops	0.146	0.123	0.091	0.064	0.029	0.0087	0.067	0.117
Kaslo	0.142	0.109	0.073	0.043	0.019	0.0062	0.063	0.076
Kelowna	0.143	0.122	0.091	0.063	0.029	0.0087	0.066	0.115
Kimberley	0.145	0.130	0.084	0.045	0.018	0.0060	0.073	0.080
Kitimat Plant	0.161	0.167	0.137	0.096	0.036	0.012	0.080	0.224
Kitimat Townsite	0.161	0.167	0.137	0.096	0.036	0.012	0.080	0.224
Ladysmith	1.10	1.02	0.587	0.353	0.110	0.039	0.482	0.738
Langford	1.32	1.19	0.697	0.415	0.130	0.045	0.590	0.852
Lillooet	0.285	0.214	0.145	0.096	0.040	0.013	0.132	0.188
Lytton	0.292	0.228	0.155	0.103	0.042	0.013	0.136	0.197
Mackenzie	0.165	0.117	0.066	0.036	0.015	0.0052	0.074	0.078
Masset	0.791	0.744	0.496	0.283	0.083	0.029	0.364	0.632
McBride	0.253	0.165	0.089	0.044	0.018	0.0056	0.117	0.097
McLeod Lake	0.153	0.103	0.069	0.044	0.016	0.0053	0.068	0.03
Merritt	0.133	0.175	0.125	0.037	0.010	0.0033	0.008	0.076
Mission City	0.644	0.550	0.327	0.204	0.069	0.024	0.283	0.419
Montrose	0.129	0.102	0.075	0.049	0.003	0.0069	0.058	0.086
Nakusp	0.129	0.102	0.073	0.049	0.022	0.0003	0.038	0.079
Nanaimo	1.02	0.102	0.542	0.328	0.020	0.0003	0.446	0.684
Nelson	0.131	0.103	0.073	0.046	0.020	0.007	0.058	0.080
Ocean Falls	0.180	0.103	0.073	0.040	0.020	0.0003	0.038	0.258

Table C-3 (Continued)

	December 2 and Leaveller				Seismi	c Data			
	Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Osoyoo	os .	0.175	0.150	0.110	0.075	0.033	0.010	0.081	0.138
Parksvi	lle	0.917	0.859	0.519	0.322	0.106	0.038	0.405	0.639
Penticto	on	0.159	0.138	0.101	0.070	0.031	0.0096	0.074	0.129
Port All	perni	0.987	0.946	0.614	0.383	0.126	0.045	0.450	0.702
Port Ali	ce	1.60	1.27	0.759	0.412	0.128	0.042	0.689	0.868
Port Ha	ardy	0.700	0.659	0.447	0.272	0.091	0.032	0.320	0.543
Port Mo	cNeill	0.711	0.678	0.464	0.285	0.096	0.034	0.326	0.557
Port Re	enfrew	1.44	1.35	0.850	0.511	0.162	0.057	0.668	0.939
Powell	River	0.595	0.556	0.373	0.242	0.086	0.031	0.273	0.457
Prince	George	0.113	0.089	0.059	0.040	0.019	0.0059	0.049	0.079
Prince	Rupert	0.246	0.269	0.209	0.135	0.046	0.016	0.117	0.314
Princet	on	0.259	0.209	0.144	0.096	0.040	0.012	0.121	0.182
Qualicu	ım Beach	0.888	0.838	0.517	0.323	0.108	0.038	0.395	0.629
Queen	Charlotte City	1.62	1.37	0.842	0.452	0.124	0.041	0.757	0.989
Quesne	el	0.105	0.088	0.065	0.047	0.022	0.0069	0.047	0.091
Revelst	oke	0.145	0.109	0.070	0.043	0.019	0.0062	0.064	0.078
Salmor	ı Arm	0.131	0.104	0.075	0.052	0.024	0.0073	0.059	0.093
Sandsp	it	1.31	1.16	0.724	0.396	0.110	0.036	0.603	0.868
Sechelt	İ.	0.828	0.745	0.434	0.265	0.086	0.030	0.363	0.555
Sidney		1.23	1.10	0.630	0.371	0.115	0.040	0.545	0.790
Smith F	River	0.705	0.447	0.234	0.100	0.028	0.0096	0.354	0.255
Smithe	rs	0.100	0.090	0.076	0.058	0.025	0.0082	0.047	0.134
Sooke		1.34	1.24	0.752	0.456	0.144	0.050	0.605	0.885
Squam	ish	0.600	0.517	0.314	0.200	0.069	0.024	0.266	0.404
Stewart	t	0.139	0.132	0.111	0.078	0.029	0.010	0.068	0.180
Tahsis		1.35	1.19	0.767	0.456	0.144	0.050	0.622	0.852
Taylor		0.143	0.093	0.052	0.025	0.0076	0.0031	0.079	0.058
Terrace		0.146	0.145	0.120	0.085	0.032	0.011	0.072	0.200
Tofino		1.46	1.36	0.891	0.536	0.170	0.060	0.695	0.945
Trail		0.129	0.101	0.075	0.050	0.022	0.0070	0.058	0.087
Ucluele	t	1.48	1.38	0.897	0.539	0.171	0.060	0.708	0.949
Vancou	ver Region								
Burr	naby (Simon Fraser Univ.)	0.768	0.673	0.386	0.236	0.076	0.027	0.333	0.500
Clov	rerdale	0.800	0.702	0.400	0.243	0.077	0.027	0.347	0.519
Han	еу	0.691	0.602	0.352	0.217	0.071	0.025	0.301	0.452
Ladr	ner	0.924	0.827	0.461	0.276	0.085	0.030	0.399	0.601
Lanç	gley	0.772	0.674	0.387	0.236	0.076	0.027	0.335	0.500
New	Westminster	0.800	0.704	0.401	0.244	0.077	0.027	0.347	0.522
Nort	h Vancouver	0.794	0.699	0.399	0.243	0.077	0.027	0.345	0.518
Rich	mond	0.885	0.787	0.443	0.266	0.083	0.029	0.383	0.578
Surr	ey (88 Ave & 156 St.)	0.786	0.690	0.394	0.240	0.076	0.027	0.341	0.511
Vand	couver (City Hall)	0.848	0.751	0.425	0.257	0.080	0.029	0.369	0.553

Table C-3 (Continued)

	Description and Location				Seismi	c Data			
	Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
	Vancouver (Granville & 41 Ave)	0.863	0.765	0.432	0.261	0.081	0.029	0.375	0.563
	West Vancouver	0.818	0.721	0.410	0.250	0.079	0.028	0.356	0.534
	Vernon	0.133	0.108	0.080	0.056	0.025	0.0077	0.061	0.099
	Victoria Region								
	Victoria (Gonzales Hts)	1.30	1.15	0.668	0.394	0.123	0.043	0.576	0.829
	Victoria (Mt Tolmie)	1.29	1.14	0.662	0.390	0.121	0.042	0.573	0.824
	Victoria	1.30	1.16	0.676	0.399	0.125	0.044	0.580	0.834
	Whistler	0.438	0.357	0.233	0.152	0.058	0.020	0.203	0.296
	White Rock	0.868	0.765	0.432	0.260	0.081	0.029	0.376	0.562
	Williams Lake	0.136	0.110	0.081	0.057	0.027	0.0080	0.062	0.110
	Youbou	1.20	1.13	0.678	0.414	0.131	0.046	0.536	0.816
Alb	erta								
	Athabasca	0.068	0.043	0.027	0.014	0.0041	0.0018	0.039	0.031
	Banff	0.279	0.184	0.099	0.046	0.016	0.0053	0.128	0.097
	Barrhead	0.105	0.064	0.038	0.019	0.0055	0.0024	0.065	0.046
	Beaverlodge	0.153	0.102	0.057	0.028	0.0090	0.0035	0.081	0.062
	Brooks	0.116	0.076	0.051	0.028	0.0089	0.0042	0.072	0.056
	Calgary	0.192	0.126	0.072	0.036	0.012	0.0048	0.098	0.075
	Campsie	0.113	0.067	0.040	0.020	0.0058	0.0024	0.070	0.048
	Camrose	0.095	0.058	0.035	0.018	0.0052	0.0022	0.058	0.042
	Canmore	0.278	0.183	0.098	0.046	0.016	0.0053	0.128	0.097
	Cardston	0.273	0.203	0.122	0.058	0.018	0.0066	0.131	0.118
	Claresholm	0.217	0.148	0.090	0.044	0.015	0.0056	0.107	0.089
	Cold Lake	0.055	0.034	0.019	0.0078	0.0016	0.0008	0.032	0.023
	Coleman	0.279	0.195	0.114	0.054	0.019	0.0065	0.128	0.110
	Coronation	0.075	0.048	0.029	0.015	0.0046	0.0020	0.044	0.034
	Cowley	0.282	0.198	0.116	0.055	0.018	0.0065	0.130	0.113
	Drumheller	0.122	0.077	0.048	0.026	0.0080	0.0037	0.075	0.055
	Edmonton	0.103	0.062	0.036	0.018	0.0053	0.0022	0.064	0.044
	Edson	0.165	0.111	0.062	0.030	0.0089	0.0035	0.087	0.066
	Embarras Portage	0.052	0.031	0.016	0.0065	0.0013	0.0007	0.030	0.020
	Fairview	0.121	0.071	0.041	0.020	0.0059	0.0025	0.075	0.051
	Fort MacLeod	0.225	0.160	0.097	0.047	0.015	0.0058	0.111	0.095
	Fort McMurray	0.053	0.034	0.018	0.0078	0.0016	0.0008	0.031	0.023
	Fort Saskatchewan	0.086	0.053	0.032	0.017	0.0050	0.0021	0.052	0.038
	Fort Vermilion	0.056	0.036	0.019	0.0081	0.0018	0.0008	0.032	0.024
	Grande Prairie	0.141	0.093	0.053	0.026	0.0074	0.0031	0.079	0.058
	Habay	0.068	0.045	0.033	0.020	0.0067	0.0031	0.040	0.036
	Hardisty	0.068	0.043	0.027	0.014	0.0041	0.0018	0.040	0.031
	High River	0.203	0.134	0.079	0.039	0.013	0.0052	0.101	0.079
	Hinton	0.280	0.182	0.096	0.043	0.015	0.0048	0.131	0.097
	Jasper	0.287	0.190	0.101	0.046	0.017	0.0052	0.132	0.101

Table C-3 (Continued)

Province and Location				Seismi	c Data			,
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PG\
Keg River	0.067	0.042	0.025	0.012	0.0034	0.0015	0.039	0.03
Lac la Biche	0.059	0.038	0.023	0.011	0.0033	0.0015	0.034	0.02
Lacombe	0.127	0.081	0.047	0.023	0.0065	0.0027	0.077	0.05
Lethbridge	0.164	0.125	0.081	0.042	0.013	0.0053	0.087	0.07
Manning	0.081	0.049	0.029	0.015	0.0046	0.0020	0.048	0.03
Medicine Hat	0.083	0.060	0.045	0.026	0.0083	0.0039	0.050	0.04
Peace River	0.098	0.058	0.034	0.017	0.0052	0.0022	0.061	0.04
Pincher Creek	0.284	0.202	0.119	0.056	0.019	0.0066	0.132	0.11
Ranfurly	0.066	0.042	0.026	0.013	0.0039	0.0018	0.038	0.03
Red Deer	0.131	0.085	0.049	0.024	0.0067	0.0028	0.078	0.05
Rocky Mountain House	0.174	0.116	0.065	0.030	0.0090	0.0035	0.090	0.06
Slave Lake	0.075	0.047	0.029	0.015	0.0046	0.0020	0.044	0.03
Stettler	0.109	0.066	0.039	0.019	0.0056	0.0024	0.067	0.04
Stony Plain	0.115	0.069	0.040	0.020	0.0058	0.0025	0.071	0.05
Suffield	0.099	0.068	0.049	0.028	0.0087	0.0041	0.060	0.05
Taber	0.134	0.101	0.069	0.036	0.012	0.0049	0.079	0.07
Turner Valley	0.253	0.164	0.091	0.043	0.015	0.0053	0.122	0.09
Valleyview	0.126	0.078	0.045	0.022	0.0064	0.0027	0.077	0.05
Vegreville	0.069	0.044	0.027	0.014	0.0041	0.0018	0.040	0.03
Vermilion	0.060	0.038	0.023	0.012	0.0034	0.0015	0.035	0.02
Wagner	0.077	0.048	0.030	0.015	0.0046	0.0020	0.046	0.03
Wainwright	0.062	0.040	0.025	0.012	0.0037	0.0017	0.036	0.02
Wetaskiwin	0.115	0.069	0.040	0.020	0.0058	0.0024	0.071	0.04
Whitecourt	0.125	0.079	0.046	0.023	0.0064	0.0027	0.076	0.05
Wimborne	0.133	0.087	0.052	0.027	0.0081	0.0037	0.078	0.05
skatchewan								
Assiniboia	0.136	0.076	0.038	0.016	0.0034	0.0014	0.084	0.05
Battrum	0.065	0.042	0.024	0.012	0.0031	0.0015	0.037	0.03
Biggar	0.057	0.037	0.021	0.0088	0.0019	0.0010	0.033	0.02
Broadview	0.077	0.048	0.025	0.010	0.0022	0.0011	0.045	0.03
Dafoe	0.062	0.040	0.022	0.0089	0.0019	0.0010	0.036	0.02
Dundurn	0.059	0.039	0.022	0.0092	0.0019	0.0010	0.034	0.02
Estevan	0.129	0.072	0.035	0.015	0.0031	0.0013	0.079	0.05
Hudson Bay	0.055	0.034	0.019	0.0079	0.0016	0.0008	0.032	0.02
Humboldt	0.058	0.037	0.020	0.0085	0.0018	0.0010	0.033	0.02
Island Falls	0.054	0.031	0.016	0.0065	0.0013	0.0007	0.031	0.02
Kamsack	0.058	0.037	0.020	0.0085	0.0018	0.0010	0.033	0.02
Kindersley	0.060	0.039	0.024	0.012	0.0033	0.0015	0.035	0.02
Lloydminster	0.057	0.036	0.021	0.010	0.0030	0.0015	0.033	0.02
Maple Creek	0.069	0.048	0.036	0.021	0.0068	0.0032	0.040	0.03
Meadow Lake	0.055	0.034	0.018	0.0075	0.0016	0.0008	0.032	0.02
Melfort	0.055	0.035	0.019	0.0081	0.0018	0.0010	0.032	0.02
Melville	0.069	0.044	0.023	0.0097	0.0021	0.0011	0.040	0.03

National Building Code of Canata 2015 Volume 1, Division B

Table C-3 (Continued)

D 1				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Moose Jaw	0.096	0.058	0.030	0.013	0.0027	0.0013	0.057	0.042
Nipawin	0.054	0.034	0.018	0.0078	0.0016	0.0008	0.032	0.023
North Battleford	0.056	0.036	0.020	0.0085	0.0018	0.0010	0.032	0.024
Prince Albert	0.055	0.034	0.019	0.0078	0.0016	0.0008	0.032	0.023
Qu'Appelle	0.090	0.054	0.028	0.012	0.0025	0.0011	0.054	0.039
Regina	0.101	0.060	0.030	0.013	0.0027	0.0013	0.061	0.043
Rosetown	0.059	0.038	0.022	0.0091	0.0019	0.0010	0.034	0.027
Saskatoon	0.057	0.037	0.021	0.0089	0.0019	0.0010	0.033	0.025
Scott	0.057	0.037	0.020	0.0086	0.0019	0.0010	0.033	0.025
Strasbourg	0.074	0.046	0.025	0.010	0.0022	0.0011	0.043	0.032
Swift Current	0.070	0.045	0.025	0.012	0.0030	0.0014	0.040	0.032
Uranium City	0.053	0.032	0.016	0.0066	0.0013	0.0007	0.031	0.021
Weyburn	0.186	0.097	0.045	0.018	0.0039	0.0014	0.118	0.070
Yorkton	0.063	0.040	0.022	0.0091	0.0019	0.0010	0.036	0.028
M anitoba								
Beausejour	0.056	0.033	0.017	0.0067	0.0015	0.0007	0.032	0.021
Boissevain	0.059	0.037	0.020	0.0082	0.0018	0.0010	0.034	0.025
Brandon	0.054	0.031	0.016	0.0063	0.0013	0.0007	0.031	0.020
Churchill	0.053	0.032	0.017	0.0069	0.0015	0.0008	0.031	0.021
Dauphin	0.055	0.035	0.019	0.0079	0.0018	0.0010	0.032	0.024
Flin Flon	0.054	0.032	0.016	0.0065	0.0013	0.0007	0.031	0.021
Gimli	0.055	0.032	0.017	0.0067	0.0015	0.0007	0.032	0.021
Island Lake	0.054	0.033	0.017	0.0070	0.0015	0.0008	0.031	0.021
Lac du Bonnet	0.056	0.033	0.017	0.0067	0.0015	0.0007	0.033	0.023
Lynn Lake	0.053	0.032	0.016	0.0066	0.0013	0.0007	0.031	0.021
Morden	0.053	0.031	0.015	0.0063	0.0013	0.0007	0.031	0.020
Neepawa	0.054	0.031	0.016	0.0065	0.0013	0.0007	0.031	0.021
Pine Falls	0.056	0.033	0.017	0.0067	0.0015	0.0007	0.032	0.021
Portage la Prairie	0.054	0.032	0.016	0.0065	0.0013	0.0007	0.031	0.021
Rivers	0.058	0.037	0.020	0.0084	0.0018	0.0010	0.034	0.025
Sandilands	0.055	0.032	0.016	0.0065	0.0013	0.0007	0.032	0.021
Selkirk	0.055	0.032	0.016	0.0066	0.0013	0.0007	0.032	0.021
Split Lake	0.053	0.032	0.017	0.0067	0.0015	0.0007	0.031	0.021
Steinbach	0.055	0.032	0.016	0.0065	0.0013	0.0007	0.032	0.021
Swan River	0.055	0.035	0.019	0.0079	0.0018	0.0008	0.032	0.024
The Pas	0.054	0.032	0.016	0.0065	0.0013	0.0007	0.031	0.021
Thompson	0.053	0.032	0.017	0.0067	0.0015	0.0007	0.031	0.021
Virden	0.064	0.041	0.022	0.0089	0.0019	0.0010	0.037	0.028
Winnipeg	0.054	0.032	0.016	0.0066	0.0013	0.0007	0.032	0.021
Ontario								
Ailsa Craig	0.095	0.064	0.039	0.020	0.0049	0.0021	0.056	0.050
Ajax	0.210	0.114	0.060	0.029	0.0071	0.0028	0.134	0.091

Table C-3 (Continued)

	Dravines and Leastion				Seismi	c Data			
	Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
	Alexandria	0.589	0.309	0.148	0.068	0.018	0.0062	0.376	0.255
	Alliston	0.111	0.076	0.046	0.024	0.0059	0.0025	0.066	0.060
	Almonte	0.337	0.188	0.098	0.048	0.013	0.0049	0.215	0.157
	Armstrong	0.064	0.037	0.019	0.0081	0.0018	0.0008	0.038	0.025
	Arnprior	0.371	0.201	0.102	0.049	0.013	0.0049	0.238	0.168
	Atikokan	0.069	0.038	0.018	0.0072	0.0015	0.0007	0.041	0.025
	Attawapiskat	0.074	0.043	0.022	0.0092	0.0019	0.0010	0.045	0.030
	Aurora	0.138	0.087	0.050	0.026	0.0064	0.0027	0.085	0.068
	Bancroft	0.151	0.105	0.063	0.032	0.0084	0.0035	0.090	0.085
	Barrie	0.108	0.077	0.047	0.025	0.0061	0.0025	0.063	0.060
	Barriefield	0.162	0.110	0.066	0.034	0.0089	0.0038	0.098	0.091
	Beaverton	0.117	0.082	0.050	0.026	0.0065	0.0028	0.069	0.064
	Belleville	0.162	0.105	0.061	0.031	0.0080	0.0034	0.100	0.087
	Belmont	0.116	0.073	0.042	0.021	0.0053	0.0021	0.070	0.056
	Kitchenuhmay-koosib (Big Trout Lake)	0.054	0.033	0.017	0.0072	0.0015	0.0008	0.032	0.023
	CFB Borden	0.107	0.075	0.046	0.024	0.0059	0.0025	0.063	0.059
	Bracebridge	0.116	0.084	0.051	0.027	0.0068	0.0028	0.068	0.067
	Bradford	0.123	0.081	0.048	0.025	0.0062	0.0027	0.074	0.063
	Brampton	0.168	0.096	0.052	0.026	0.0064	0.0025	0.106	0.074
	Brantford	0.155	0.089	0.049	0.024	0.0059	0.0024	0.097	0.068
	Brighton	0.173	0.106	0.060	0.030	0.0076	0.0032	0.108	0.087
	Brockville	0.259	0.157	0.086	0.043	0.011	0.0046	0.164	0.131
	Burk's Falls	0.143	0.096	0.057	0.029	0.0074	0.0031	0.086	0.076
	Burlington	0.266	0.131	0.062	0.029	0.0068	0.0027	0.172	0.102
/	Cambridge	0.141	0.084	0.047	0.024	0.0058	0.0024	0.088	0.066
	Campbellford	0.144	0.097	0.058	0.030	0.0076	0.0032	0.088	0.078
	Cannington	0.122	0.084	0.051	0.027	0.0067	0.0028	0.073	0.067
	Carleton Place	0.302	0.175	0.093	0.046	0.012	0.0048	0.192	0.146
	Cavan	0.140	0.092	0.055	0.028	0.0071	0.0030	0.086	0.074
	Centralia	0.092	0.064	0.039	0.020	0.0050	0.0021	0.054	0.050
	Chapleau	0.071	0.050	0.031	0.016	0.0037	0.0017	0.041	0.039
	Chatham	0.112	0.070	0.039	0.019	0.0047	0.0020	0.068	0.054
	Chesley	0.083	0.062	0.040	0.021	0.0052	0.0022	0.047	0.050
	Clinton	0.084	0.061	0.038	0.020	0.0049	0.0021	0.048	0.048
	Coboconk	0.120	0.086	0.052	0.027	0.0070	0.0030	0.070	0.068
	Cobourg	0.179	0.106	0.059	0.030	0.0074	0.0031	0.113	0.086
	Cochrane	0.222	0.107	0.052	0.024	0.0058	0.0022	0.145	0.083
	Colborne	0.176	0.106	0.060	0.030	0.0076	0.0031	0.111	0.087
	Collingwood	0.096	0.070	0.044	0.023	0.0058	0.0024	0.055	0.056
	Cornwall	0.587	0.307	0.147	0.067	0.017	0.0060	0.375	0.254
	Corunna	0.087	0.060	0.036	0.018	0.0046	0.0020	0.050	0.047
	Deep River	0.389	0.208	0.104	0.049	0.013	0.0048	0.250	0.172

Table C-3 (Continued)

D				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Deseronto	0.158	0.106	0.062	0.032	0.0081	0.0035	0.096	0.087
Dorchester	0.112	0.072	0.042	0.021	0.0052	0.0021	0.067	0.056
Dorion	0.059	0.035	0.018	0.0076	0.0016	0.0008	0.035	0.024
Dresden	0.104	0.067	0.039	0.019	0.0047	0.0020	0.062	0.051
Dryden	0.072	0.040	0.019	0.0076	0.0016	0.0008	0.043	0.027
Dundalk	0.097	0.069	0.043	0.022	0.0056	0.0024	0.057	0.055
Dunnville	0.232	0.120	0.059	0.028	0.0067	0.0027	0.149	0.093
Durham	0.088	0.065	0.041	0.021	0.0053	0.0022	0.051	0.051
Dutton	0.116	0.072	0.041	0.021	0.0050	0.0021	0.071	0.056
Earlton	0.182	0.108	0.059	0.029	0.0074	0.0030	0.114	0.086
Edison	0.070	0.039	0.019	0.0075	0.0016	0.0008	0.042	0.027
Elliot Lake	0.074	0.054	0.035	0.018	0.0046	0.0020	0.043	0.043
Elmvale	0.101	0.074	0.046	0.024	0.0061	0.0025	0.059	0.059
Embro	0.111	0.072	0.042	0.022	0.0053	0.0022	0.067	0.056
Englehart	0.175	0.104	0.057	0.029	0.0073	0.0030	0.109	0.083
Espanola	0.086	0.063	0.039	0.021	0.0052	0.0021	0.050	0.050
Exeter	0.090	0.063	0.039	0.020	0.0049	0.0021	0.052	0.050
Fenelon Falls	0.121	0.086	0.052	0.027	0.0068	0.0030	0.072	0.068
Fergus	0.115	0.075	0.045	0.023	0.0056	0.0024	0.069	0.059
Forest	0.087	0.061	0.037	0.019	0.0047	0.0020	0.051	0.047
Fort Erie	0.312	0.152	0.070	0.032	0.0074	0.0028	0.202	0.117
Fort Erie (Ridgeway)	0.307	0.149	0.069	0.031	0.0073	0.0028	0.198	0.115
Fort Frances	0.064	0.035	0.017	0.0069	0.0015	0.0007	0.039	0.024
Gananoque	0.180	0.119	0.070	0.036	0.0095	0.0039	0.110	0.099
Geraldton	0.057	0.036	0.019	0.0082	0.0018	0.0010	0.033	0.024
Glencoe	0.107	0.068	0.040	0.020	0.0049	0.0021	0.064	0.054
Goderich	0.079	0.059	0.037	0.019	0.0049	0.0020	0.045	0.047
Gore Bay	0.071	0.055	0.035	0.018	0.0047	0.0020	0.040	0.044
Graham	0.071	0.039	0.020	0.0079	0.0016	0.0008	0.043	0.027
Gravenhurst (Muskoka Airport)	0.112	0.082	0.050	0.026	0.0067	0.0028	0.065	0.064
Grimsby	0.301	0.146	0.068	0.030	0.0073	0.0028	0.195	0.113
Guelph	0.133	0.082	0.047	0.024	0.0058	0.0024	0.082	0.063
Guthrie	0.109	0.078	0.048	0.025	0.0062	0.0027	0.064	0.062
Haileybury	0.219	0.127	0.067	0.033	0.0083	0.0034	0.138	0.101
Haldimand (Caledonia)	0.215	0.112	0.056	0.027	0.0064	0.0025	0.138	0.087
Haldimand (Hagersville)	0.172	0.096	0.051	0.025	0.0061	0.0024	0.108	0.074
Haliburton	0.133	0.095	0.057	0.030	0.0077	0.0032	0.079	0.076
Halton Hills (Georgetown)	0.155	0.090	0.050	0.025	0.0062	0.0025	0.097	0.070
Hamilton	0.260	0.128	0.061	0.028	0.0068	0.0027	0.168	0.101
Hanover	0.085	0.063	0.040	0.021	0.0052	0.0022	0.049	0.050
Hastings	0.141	0.096	0.057	0.029	0.0074	0.0031	0.085	0.076
Hawkesbury	0.506	0.268	0.131	0.062	0.016	0.0058	0.326	0.224

Table C-3 (Continued)

D 1 1 1				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Hearst	0.073	0.048	0.028	0.013	0.0031	0.0014	0.043	0.035
Honey Harbour	0.103	0.076	0.047	0.025	0.0062	0.0027	0.060	0.060
Hornepayne	0.063	0.043	0.025	0.012	0.0028	0.0014	0.037	0.031
Huntsville	0.129	0.091	0.054	0.028	0.0071	0.0031	0.077	0.072
Ingersoll	0.116	0.073	0.043	0.022	0.0053	0.0022	0.070	0.058
Iroquois Falls	0.196	0.101	0.052	0.025	0.0061	0.0024	0.127	0.079
Jellicoe	0.057	0.035	0.019	0.0081	0.0018	0.0010	0.033	0.024
Kapuskasing	0.112	0.064	0.035	0.017	0.0040	0.0017	0.070	0.048
Kemptville	0.429	0.229	0.114	0.054	0.014	0.0052	0.275	0.189
Kenora	0.064	0.036	0.018	0.0072	0.0015	0.0007	0.038	0.024
Killaloe	0.264	0.154	0.083	0.041	0.011	0.0044	0.168	0.127
Kincardine	0.076	0.058	0.037	0.019	0.0049	0.0021	0.043	0.046
Kingston	0.161	0.110	0.065	0.034	0.0089	0.0038	0.098	0.091
Kinmount	0.123	0.089	0.054	0.028	0.0071	0.0031	0.072	0.071
Kirkland Lake	0.159	0.095	0.053	0.027	0.0067	0.0028	0.099	0.076
Kitchener	0.122	0.077	0.045	0.023	0.0056	0.0024	0.074	0.060
Lakefield	0.130	0.091	0.055	0.028	0.0073	0.0031	0.078	0.072
Lansdowne House	0.056	0.035	0.019	0.0078	0.0016	0.0008	0.033	0.024
Leamington	0.114	0.070	0.038	0.018	0.0044	0.0018	0.069	0.052
Lindsay	0.126	0.087	0.052	0.027	0.0068	0.0030	0.076	0.068
Lion's Head	0.080	0.062	0.040	0.021	0.0052	0.0022	0.045	0.050
Listowel	0.093	0.066	0.041	0.021	0.0052	0.0022	0.054	0.052
London	0.108	0.070	0.041	0.021	0.0052	0.0021	0.064	0.055
Lucan	0.097	0.065	0.039	0.020	0.0050	0.0021	0.057	0.051
Maitland	0.282	0.167	0.090	0.045	0.012	0.0046	0.179	0.140
Markdale	0.089	0.066	0.042	0.022	0.0055	0.0022	0.052	0.052
Markham	0.182	0.103	0.056	0.028	0.0068	0.0028	0.115	0.080
Martin	0.072	0.039	0.019	0.0075	0.0015	0.0008	0.043	0.027
Matheson	0.160	0.091	0.050	0.025	0.0062	0.0025	0.101	0.072
Mattawa	0.446	0.237	0.114	0.052	0.013	0.0046	0.285	0.191
Midland	0.101	0.075	0.046	0.024	0.0061	0.0025	0.058	0.059
Milton	0.191	0.103	0.054	0.026	0.0064	0.0025	0.122	0.080
Milverton	0.098	0.067	0.041	0.021	0.0053	0.0022	0.058	0.052
Minden	0.124	0.089	0.054	0.028	0.0071	0.0031	0.073	0.071
Mississauga	0.219	0.115	0.058	0.028	0.0068	0.0027	0.141	0.090
Mississauga (Lester B. Pearson Int'l Airport)	0.193	0.105	0.056	0.027	0.0067	0.0027	0.123	0.082
Mississauga (Port Credit)	0.247	0.125	0.062	0.029	0.0070	0.0027	0.159	0.098
Mitchell	0.093	0.065	0.040	0.021	0.0052	0.0021	0.054	0.051
Moosonee	0.081	0.051	0.029	0.014	0.0033	0.0015	0.049	0.038
Morrisburg	0.558	0.287	0.135	0.062	0.016	0.0056	0.358	0.236
Mount Forest	0.093	0.067	0.041	0.022	0.0053	0.0022	0.054	0.052
Nakina	0.057	0.036	0.019	0.0082	0.0018	0.0010	0.033	0.024
Nanticoke (Jarvis)	0.156	0.090	0.049	0.024	0.0059	0.0024	0.098	0.068

National Building Code of Canata 2015 Volume 1, Division B

Table C-3 (Continued)

Dravings and Location	Seismic Data										
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV			
Nanticoke (Port Dover)	0.144	0.085	0.047	0.023	0.0058	0.0024	0.089	0.066			
Napanee	0.156	0.106	0.063	0.033	0.0084	0.0037	0.095	0.087			
New Liskeard	0.209	0.122	0.065	0.032	0.0081	0.0032	0.132	0.097			
Newcastle	0.186	0.107	0.058	0.029	0.0071	0.0030	0.118	0.086			
Newcastle (Bowmanville)	0.188	0.107	0.058	0.029	0.0071	0.0030	0.119	0.086			
Newmarket	0.132	0.085	0.050	0.026	0.0064	0.0027	0.081	0.067			
Niagara Falls	0.321	0.157	0.072	0.032	0.0076	0.0030	0.207	0.121			
North Bay	0.247	0.145	0.076	0.037	0.0095	0.0037	0.155	0.114			
Norwood	0.136	0.094	0.057	0.029	0.0074	0.0031	0.082	0.075			
Oakville	0.260	0.129	0.062	0.029	0.0070	0.0027	0.167	0.101			
Orangeville	0.115	0.076	0.046	0.023	0.0058	0.0024	0.069	0.059			
Orillia	0.109	0.079	0.049	0.026	0.0064	0.0027	0.064	0.063			
Oshawa	0.192	0.108	0.058	0.029	0.0071	0.0030	0.122	0.086			
Ottawa (Metropolitan)											
Ottawa (City Hall)	0.439	0.237	0.118	0.056	0.015	0.0055	0.281	0.196			
Ottawa (Barrhaven)	0.427	0.230	0.115	0.055	0.015	0.0053	0.273	0.191			
Ottawa (Kanata)	0.401	0.218	0.110	0.053	0.014	0.0052	0.257	0.181			
Ottawa (M-C Int'l Airport)	0.446	0.240	0.119	0.056	0.015	0.0055	0.285	0.199			
Ottawa (Orleans)	0.474	0.252	0.124	0.058	0.015	0.0056	0.304	0.208			
Owen Sound	0.083	0.064	0.041	0.021	0.0053	0.0022	0.048	0.051			
Pagwa River	0.060	0.040	0.023	0.011	0.0024	0.0013	0.035	0.028			
Paris	0.141	0.084	0.047	0.023	0.0058	0.0024	0.088	0.066			
Parkhill	0.092	0.063	0.038	0.020	0.0049	0.0020	0.054	0.050			
Parry Sound	0.110	0.079	0.048	0.025	0.0064	0.0027	0.064	0.063			
Pelham (Fonthill)	0.311	0.152	0.070	0.031	0.0074	0.0028	0.201	0.117			
Pembroke	0.379	0.203	0.101	0.049	0.013	0.0048	0.243	0.168			
Penetanguishene	0.101	0.074	0.046	0.024	0.0061	0.0025	0.058	0.059			
Perth	0.225	0.142	0.080	0.041	0.011	0.0045	0.140	0.119			
Petawawa	0.379	0.202	0.101	0.048	0.013	0.0048	0.243	0.166			
Peterborough	0.135	0.092	0.055	0.028	0.0071	0.0031	0.082	0.072			
Petrolia	0.092	0.062	0.037	0.019	0.0047	0.0020	0.054	0.048			
Pickering (Dunbarton)	0.219	0.117	0.060	0.029	0.0071	0.0028	0.140	0.094			
Picton	0.159	0.104	0.061	0.031	0.0078	0.0032	0.098	0.086			
Plattsville	0.119	0.075	0.044	0.022	0.0055	0.0022	0.072	0.059			
Point Alexander	0.391	0.209	0.104	0.049	0.013	0.0048	0.251	0.172			
Port Burwell	0.132	0.079	0.044	0.022	0.0055	0.0022	0.081	0.062			
Port Colborne	0.298	0.146	0.068	0.031	0.0073	0.0028	0.192	0.113			
Port Elgin	0.077	0.060	0.038	0.020	0.0050	0.0021	0.044	0.048			
Port Hope	0.181	0.106	0.059	0.029	0.0073	0.0030	0.114	0.086			
Port Perry	0.144	0.091	0.053	0.027	0.0067	0.0028	0.089	0.071			
Port Stanley	0.123	0.075	0.043	0.021	0.0052	0.0021	0.075	0.058			
Prescott	0.350	0.195	0.101	0.049	0.013	0.0049	0.224	0.162			

Table C-3 (Continued)

Province and Location				Seismi	c Data			
Flovince and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PG\
Princeton	0.129	0.079	0.045	0.023	0.0056	0.0022	0.079	0.062
Raith	0.067	0.038	0.019	0.0078	0.0016	0.0008	0.040	0.02
Rayside-Balfour (Chelmsford)	0.104	0.072	0.044	0.023	0.0058	0.0024	0.061	0.050
Red Lake	0.068	0.038	0.019	0.0076	0.0016	0.0008	0.041	0.02
Renfrew	0.352	0.191	0.097	0.047	0.013	0.0048	0.226	0.16
Richmond Hill	0.163	0.095	0.053	0.027	0.0065	0.0027	0.102	0.07
Rockland	0.510	0.266	0.129	0.060	0.016	0.0056	0.328	0.22
Sarnia	0.085	0.059	0.036	0.018	0.0046	0.0020	0.049	0.04
Sault Ste. Marie	0.062	0.044	0.028	0.014	0.0033	0.0015	0.036	0.03
Schreiber	0.057	0.035	0.019	0.0079	0.0018	0.0010	0.033	0.024
Seaforth	0.087	0.062	0.039	0.020	0.0050	0.0021	0.050	0.048
Shelburne	0.104	0.072	0.044	0.023	0.0058	0.0024	0.062	0.050
Simcoe	0.141	0.084	0.047	0.023	0.0058	0.0024	0.087	0.06
Sioux Lookout	0.073	0.040	0.020	0.0078	0.0016	0.0008	0.044	0.02
Smiths Falls	0.256	0.156	0.086	0.044	0.012	0.0046	0.161	0.13
Smithville	0.296	0.144	0.067	0.030	0.0071	0.0027	0.191	0.11
Smooth Rock Falls	0.200	0.098	0.047	0.021	0.0050	0.0020	0.130	0.07
South River	0.164	0.106	0.061	0.031	0.0080	0.0034	0.100	0.08
Southampton	0.077	0.060	0.038	0.020	0.0050	0.0021	0.044	0.04
St. Catharines	0.319	0.155	0.071	0.032	0.0076	0.0028	0.206	0.12
St. Mary's	0.101	0.068	0.041	0.021	0.0052	0.0021	0.060	0.05
St. Thomas	0.117	0.073	0.042	0.021	0.0052	0.0021	0.071	0.05
Stirling	0.149	0.100	0.060	0.031	0.0078	0.0034	0.091	0.08
Stratford	0.103	0.069	0.041	0.021	0.0053	0.0022	0.061	0.05
Strathroy	0.100	0.066	0.039	0.020	0.0049	0.0021	0.059	0.05
Sturgeon Falls	0.183	0.113	0.062	0.031	0.0080	0.0032	0.113	0.08
Sudbury	0.110	0.076	0.046	0.024	0.0059	0.0025	0.065	0.05
Sundridge	0.157	0.103	0.059	0.030	0.0078	0.0032	0.095	0.08
Tavistock	0.108	0.071	0.042	0.022	0.0053	0.0022	0.065	0.05
Temagami	0.239	0.138	0.072	0.035	0.0089	0.0035	0.151	0.10
Thamesford	0.111	0.071	0.042	0.021	0.0053	0.0022	0.066	0.05
Thedford	0.089	0.062	0.038	0.019	0.0047	0.0020	0.052	0.04
Thunder Bay	0.061	0.035	0.018	0.0075	0.0016	0.0008	0.036	0.024
Tillsonburg	0.126	0.077	0.044	0.022	0.0055	0.0022	0.076	0.06
Timmins	0.125	0.075	0.043	0.021	0.0053	0.0022	0.078	0.05
Timmins (Porcupine)	0.140	0.081	0.045	0.022	0.0055	0.0022	0.088	0.06
Toronto Metropolitan Region								
Etobicoke	0.193	0.106	0.056	0.027	0.0067	0.0027	0.124	0.08
North York	0.195	0.107	0.056	0.028	0.0067	0.0027	0.125	0.08
Scarborough	0.219	0.116	0.060	0.029	0.0070	0.0028	0.140	0.09
Toronto (City Hall)	0.249	0.126	0.063	0.029	0.0071	0.0028	0.160	0.099
Trenton	0.167	0.105	0.060	0.030	0.0077	0.0032	0.104	0.08

Table C-3 (Continued)

	Duraine and Leastine	Seismic Data											
	Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV				
	Trout Creek	0.186	0.116	0.065	0.033	0.0084	0.0035	0.115	0.093				
	Uxbridge	0.139	0.089	0.052	0.027	0.0067	0.0028	0.086	0.070				
	Vaughan (Woodbridge)	0.167	0.096	0.053	0.026	0.0065	0.0027	0.105	0.074				
	Vittoria	0.139	0.083	0.046	0.023	0.0056	0.0024	0.086	0.064				
	Walkerton	0.083	0.062	0.039	0.021	0.0052	0.0021	0.048	0.050				
	Wallaceburg	0.098	0.064	0.037	0.018	0.0044	0.0018	0.058	0.048				
	Waterloo	0.118	0.075	0.044	0.023	0.0056	0.0022	0.072	0.059				
	Watford	0.095	0.064	0.038	0.019	0.0049	0.0020	0.056	0.050				
	Wawa	0.062	0.043	0.026	0.013	0.0030	0.0014	0.036	0.031				
	Welland	0.308	0.150	0.069	0.031	0.0074	0.0028	0.199	0.115				
	West Lorne	0.118	0.072	0.041	0.021	0.0050	0.0021	0.072	0.056				
	Whitby	0.203	0.112	0.059	0.029	0.0071	0.0028	0.130	0.089				
	Whitby (Brooklin)	0.176	0.102	0.056	0.028	0.0070	0.0028	0.111	0.080				
	White River	0.060	0.041	0.024	0.011	0.0025	0.0013	0.035	0.030				
	Wiarton	0.080	0.062	0.040	0.021	0.0052	0.0022	0.046	0.050				
	Windsor	0.096	0.063	0.035	0.017	0.0041	0.0017	0.057	0.048				
	Wingham	0.083	0.061	0.039	0.020	0.0050	0.0021	0.048	0.048				
	Woodstock	0.118	0.075	0.043	0.022	0.0055	0.0022	0.071	0.058				
	Wyoming	0.090	0.061	0.037	0.019	0.0047	0.0020	0.053	0.048				
Que	ebec												
	Acton-Vale	0.254	0.160	0.091	0.047	0.013	0.0051	0.159	0.138				
	Alma	0.785	0.416	0.196	0.089	0.022	0.0075	0.486	0.339				
	Amos	0.109	0.078	0.049	0.026	0.0067	0.0028	0.064	0.063				
	Asbestos	0.200	0.137	0.082	0.043	0.012	0.0049	0.123	0.118				
	Aylmer	0.415	0.225	0.113	0.054	0.014	0.0053	0.265	0.186				
	Baie-Comeau	0.425	0.219	0.107	0.051	0.013	0.0051	0.275	0.182				
	Baie-Saint-Paul	1.62	0.872	0.406	0.179	0.043	0.012	0.986	0.735				
	Beauport	0.509	0.275	0.138	0.067	0.018	0.0065	0.327	0.233				
	Bedford	0.358	0.204	0.107	0.053	0.014	0.0053	0.228	0.170				
	Beloeil	0.522	0.272	0.131	0.062	0.016	0.0059	0.333	0.225				
	Brome	0.236	0.152	0.087	0.045	0.012	0.0049	0.147	0.130				
	Brossard	0.587	0.306	0.145	0.067	0.017	0.0062	0.374	0.251				
	Buckingham	0.491	0.257	0.125	0.058	0.015	0.0056	0.316	0.213				
	Campbell's Bay	0.387	0.208	0.105	0.050	0.013	0.0051	0.248	0.173				
	Chambly	0.550	0.286	0.137	0.064	0.017	0.0059	0.352	0.236				
	Coaticook	0.193	0.129	0.077	0.040	0.011	0.0045	0.119	0.110				
	Contrecoeur	0.473	0.251	0.124	0.059	0.016	0.0058	0.303	0.207				
	Cowansville	0.273	0.168	0.094	0.048	0.013	0.0051	0.172	0.142				
	Deux-Montagnes	0.596	0.313	0.149	0.069	0.018	0.0062	0.380	0.258				
	Dolbeau	0.484	0.255	0.125	0.058	0.015	0.0055	0.308	0.211				
	Drummondville	0.273	0.167	0.094	0.048	0.013	0.0052	0.172	0.144				
	Farnham	0.369	0.208	0.109	0.054	0.015	0.0055	0.235	0.174				

Table C-3 (Continued)

Province and Location				Seismi	c Data			
FIOVINCE AND LOCATION	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Fort-Coulonge	0.391	0.210	0.105	0.050	0.013	0.0051	0.251	0.174
Gagnon	0.078	0.060	0.040	0.021	0.0055	0.0022	0.045	0.048
Gaspé	0.128	0.090	0.056	0.029	0.0077	0.0032	0.076	0.074
Gatineau	0.442	0.238	0.119	0.056	0.015	0.0055	0.283	0.197
Gracefield	0.426	0.222	0.109	0.051	0.013	0.0051	0.278	0.185
Granby	0.275	0.169	0.094	0.048	0.013	0.0052	0.173	0.144
Harrington-Harbour	0.072	0.056	0.037	0.020	0.0052	0.0022	0.041	0.046
Havre-St-Pierre	0.231	0.122	0.062	0.030	0.0077	0.0031	0.148	0.097
Hemmingford	0.546	0.290	0.141	0.066	0.017	0.0060	0.347	0.239
Hull	0.432	0.234	0.117	0.056	0.015	0.0055	0.276	0.195
Iberville	0.520	0.273	0.132	0.062	0.016	0.0059	0.332	0.225
Inukjuak	0.065	0.040	0.022	0.0094	0.0021	0.0010	0.038	0.028
Joliette	0.457	0.241	0.119	0.057	0.015	0.0056	0.293	0.201
Kuujjuaq	0.074	0.054	0.036	0.019	0.0049	0.0021	0.043	0.043
Kuujjuarapik	0.056	0.035	0.019	0.0078	0.0016	0.0008	0.032	0.024
La Pocatière	1.51	0.817	0.384	0.170	0.041	0.012	0.927	0.690
La-Malbaie	1.73	0.954	0.454	0.203	0.049	0.014	1.04	0.809
La-Tuque	0.196	0.137	0.082	0.043	0.012	0.0049	0.120	0.119
Lac-Mégantic	0.193	0.130	0.077	0.040	0.011	0.0045	0.119	0.111
Lachute	0.518	0.274	0.133	0.063	0.016	0.0059	0.333	0.228
Lennoxville	0.187	0.129	0.077	0.041	0.011	0.0046	0.114	0.110
Léry	0.603	0.318	0.152	0.070	0.018	0.0063	0.384	0.262
Loretteville	0.502	0.268	0.134	0.065	0.017	0.0063	0.323	0.227
Louiseville	0.366	0.201	0.105	0.052	0.014	0.0055	0.234	0.170
Magog	0.196	0.133	0.079	0.042	0.011	0.0046	0.120	0.114
Malartic	0.135	0.092	0.055	0.029	0.0074	0.0031	0.081	0.074
Maniwaki	0.430	0.220	0.107	0.050	0.013	0.0049	0.282	0.184
Masson	0.498	0.261	0.127	0.059	0.016	0.0056	0.320	0.216
Matane	0.455	0.230	0.110	0.052	0.013	0.0051	0.295	0.191
Mont-Joli	0.427	0.226	0.113	0.055	0.015	0.0055	0.275	0.191
Mont-Laurier	0.419	0.212	0.103	0.049	0.013	0.0048	0.276	0.177
Montmagny	0.601	0.341	0.172	0.082	0.022	0.0075	0.382	0.286
Montréal Region								
Beaconsfield	0.602	0.317	0.152	0.070	0.018	0.0063	0.383	0.260
Dorval	0.600	0.316	0.151	0.069	0.018	0.0062	0.382	0.259
Laval	0.595	0.311	0.148	0.068	0.018	0.0062	0.379	0.256
Montréal (City Hall)	0.595	0.311	0.148	0.068	0.018	0.0062	0.379	0.255
Montréal-Est	0.586	0.305	0.145	0.067	0.017	0.0062	0.374	0.250
Montréal-Nord	0.593	0.309	0.147	0.068	0.017	0.0062	0.378	0.254
Outremont	0.597	0.313	0.149	0.068	0.018	0.0062	0.380	0.256
Pierrefonds	0.599	0.315	0.151	0.069	0.018	0.0062	0.382	0.259
St-Lambert	0.590	0.307	0.146	0.067	0.017	0.0062	0.376	0.252

Table C-3 (Continued)

D : 11 8				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
St-Laurent	0.598	0.314	0.149	0.069	0.018	0.0062	0.381	0.258
Ste-Anne-de-Bellevue	0.602	0.317	0.152	0.070	0.018	0.0063	0.383	0.262
Verdun	0.596	0.312	0.149	0.068	0.018	0.0062	0.380	0.256
Nicolet (Gentilly)	0.364	0.201	0.106	0.052	0.015	0.0055	0.233	0.170
Nitchequon	0.062	0.047	0.031	0.017	0.0041	0.0018	0.035	0.038
Noranda	0.132	0.088	0.052	0.027	0.0068	0.0028	0.080	0.070
Percé	0.114	0.084	0.053	0.029	0.0074	0.0032	0.067	0.068
Pincourt	0.602	0.318	0.152	0.070	0.018	0.0063	0.384	0.262
Plessisville	0.250	0.160	0.092	0.048	0.013	0.0052	0.157	0.140
Port-Cartier	0.323	0.169	0.084	0.040	0.010	0.0039	0.210	0.137
Puvirnituq	0.108	0.058	0.029	0.012	0.0025	0.0011	0.068	0.043
Québec City Region								
Ancienne-Lorette	0.487	0.258	0.130	0.062	0.017	0.0062	0.314	0.220
Lévis	0.493	0.265	0.134	0.065	0.017	0.0063	0.317	0.225
Québec	0.493	0.265	0.133	0.064	0.017	0.0063	0.318	0.225
Sillery	0.486	0.260	0.131	0.063	0.017	0.0062	0.313	0.221
Ste-Foy	0.488	0.261	0.131	0.063	0.017	0.0062	0.315	0.221
Richmond	0.208	0.140	0.083	0.044	0.012	0.0049	0.128	0.121
Rimouski	0.408	0.224	0.116	0.056	0.015	0.0056	0.262	0.192
Rivière-du-Loup	1.16	0.616	0.288	0.129	0.032	0.0097	0.724	0.517
Roberval	0.688	0.353	0.164	0.074	0.019	0.0065	0.430	0.287
Rock-Island	0.199	0.133	0.078	0.041	0.011	0.0046	0.123	0.113
Rosemère	0.591	0.309	0.147	0.068	0.017	0.0062	0.377	0.255
Rouyn	0.134	0.089	0.052	0.027	0.0068	0.0028	0.081	0.070
Saguenay	0.791	0.425	0.204	0.095	0.024	0.0080	0.491	0.353
Saguenay (Bagotville)	0.801	0.434	0.210	0.098	0.025	0.0083	0.498	0.362
Saguenay (Jonquière)	0.798	0.428	0.206	0.095	0.024	0.0080	0.495	0.354
Saguenay (Kenogami)	0.799	0.428	0.206	0.095	0.024	0.0080	0.496	0.354
Saint-Eustache	0.593	0.311	0.149	0.068	0.018	0.0062	0.378	0.256
Saint-Jean-sur-Richelieu	0.522	0.274	0.133	0.062	0.016	0.0059	0.333	0.227
Salaberry-de-Valleyfield	0.602	0.318	0.152	0.070	0.018	0.0063	0.384	0.262
Schefferville	0.059	0.042	0.027	0.014	0.0033	0.0015	0.034	0.031
Senneterre	0.114	0.083	0.052	0.028	0.0071	0.0031	0.067	0.067
Sept-Îles	0.295	0.156	0.078	0.037	0.0095	0.0038	0.191	0.126
Shawinigan	0.306	0.179	0.098	0.049	0.014	0.0053	0.195	0.154
Shawville	0.386	0.208	0.105	0.050	0.013	0.0051	0.248	0.173
Sherbrooke	0.187	0.129	0.078	0.041	0.011	0.0046	0.115	0.111
Sorel	0.406	0.220	0.113	0.055	0.015	0.0056	0.259	0.184
St-Félicien	0.488	0.259	0.127	0.059	0.016	0.0056	0.309	0.212
St-Georges-de-Cacouna	0.857	0.478	0.234	0.109	0.028	0.0090	0.533	0.396
St-Hubert	0.581	0.302	0.144	0.066	0.017	0.0060	0.371	0.248
Saint-Hubert-de-Rivière-du-Loup	0.468	0.279	0.147	0.073	0.020	0.0069	0.298	0.237

National Building Code of Canata 2015 Volume 1, Division B $\,$

Table C-3 (Continued)

Drawings and Lagatica				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
St-Hyacinthe	0.369	0.208	0.109	0.054	0.015	0.0055	0.235	0.174
St-Jérôme	0.539	0.282	0.135	0.063	0.017	0.0059	0.346	0.233
St-Jovite	0.428	0.222	0.110	0.052	0.014	0.0052	0.281	0.186
St-Lazare-Hudson	0.597	0.315	0.151	0.070	0.018	0.0062	0.380	0.259
St-Nicolas	0.466	0.248	0.125	0.060	0.016	0.0060	0.301	0.21
Ste-Agathe-des-Monts	0.431	0.226	0.112	0.054	0.014	0.0053	0.282	0.19
Sutton	0.243	0.154	0.088	0.045	0.012	0.0049	0.152	0.13
Tadoussac	0.694	0.399	0.202	0.097	0.026	0.0084	0.434	0.33
Témiscaming	0.820	0.411	0.181	0.075	0.017	0.0053	0.516	0.32
Terrebonne	0.584	0.304	0.144	0.067	0.017	0.0060	0.373	0.25
Thetford Mines	0.207	0.142	0.084	0.044	0.012	0.0049	0.127	0.12
Thurso	0.492	0.258	0.126	0.059	0.016	0.0056	0.318	0.21
Trois-Rivières	0.366	0.200	0.105	0.052	0.014	0.0055	0.234	0.17
Val-d'Or	0.135	0.093	0.056	0.029	0.0076	0.0032	0.081	0.07
Varennes	0.571	0.296	0.141	0.065	0.017	0.0060	0.365	0.24
Verchères	0.537	0.278	0.134	0.062	0.016	0.0059	0.343	0.22
Victoriaville	0.233	0.152	0.089	0.046	0.013	0.0051	0.145	0.13
Ville-Marie	0.262	0.148	0.076	0.037	0.0093	0.0037	0.166	0.11
Wakefield	0.409	0.222	0.111	0.054	0.014	0.0053	0.262	0.18
Waterloo	0.232	0.150	0.087	0.045	0.012	0.0049	0.144	0.12
Windsor	0.194	0.134	0.080	0.042	0.012	0.0048	0.119	0.11
lew Brunswick								
Alma	0.144	0.096	0.058	0.030	0.0078	0.0034	0.088	0.07
Bathurst	0.217	0.127	0.071	0.036	0.0090	0.0038	0.138	0.10
Campbellton	0.210	0.133	0.076	0.039	0.010	0.0042	0.132	0.11
Edmundston	0.231	0.153	0.089	0.046	0.012	0.0049	0.145	0.13
Fredericton	0.210	0.127	0.071	0.037	0.0093	0.0039	0.133	0.10
Gagetown	0.195	0.119	0.068	0.035	0.0089	0.0038	0.122	0.09
Grand Falls	0.254	0.153	0.085	0.043	0.011	0.0046	0.162	0.13
Miramichi	0.214	0.125	0.069	0.035	0.0087	0.0037	0.136	0.10
Moncton	0.158	0.100	0.059	0.031	0.0078	0.0034	0.098	0.08
Oromocto	0.209	0.126	0.071	0.036	0.0092	0.0039	0.132	0.10
Sackville	0.140	0.093	0.057	0.030	0.0078	0.0034	0.085	0.07
Saint Andrews	0.874	0.436	0.189	0.077	0.017	0.0053	0.544	0.34
Saint George	0.578	0.298	0.135	0.058	0.014	0.0048	0.367	0.23
Saint John	0.199	0.121	0.068	0.035	0.0089	0.0037	0.125	0.09
Shippagan	0.143	0.096	0.058	0.030	0.0078	0.0034	0.087	0.07
St. Stephen	0.781	0.380	0.163	0.067	0.015	0.0051	0.491	0.30
Woodstock	0.206	0.129	0.074	0.038	0.0099	0.0042	0.130	0.10
lova Scotia								
Amherst	0.130	0.089	0.055	0.030	0.0078	0.0034	0.078	0.07
Antigonish	0.098	0.076	0.050	0.028	0.0073	0.0031	0.057	0.06

Table C-3 (Continued)

Dravings and Location				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Bridgewater	0.117	0.086	0.054	0.029	0.0078	0.0034	0.068	0.071
Canso	0.114	0.085	0.054	0.029	0.0078	0.0034	0.066	0.071
Debert	0.107	0.080	0.052	0.029	0.0076	0.0032	0.062	0.068
Digby	0.164	0.105	0.061	0.032	0.0083	0.0035	0.101	0.085
Greenwood (CFB)	0.128	0.090	0.055	0.029	0.0077	0.0032	0.076	0.074
Halifax Region								
Dartmouth	0.110	0.082	0.053	0.029	0.0076	0.0032	0.064	0.068
Halifax	0.110	0.082	0.053	0.029	0.0076	0.0032	0.064	0.068
Kentville	0.120	0.087	0.055	0.030	0.0078	0.0034	0.071	0.072
Liverpool	0.120	0.086	0.054	0.029	0.0076	0.0032	0.070	0.070
Lockeport	0.123	0.087	0.054	0.028	0.0074	0.0031	0.073	0.071
Louisburg	0.119	0.089	0.056	0.030	0.0080	0.0035	0.069	0.074
Lunenburg	0.115	0.085	0.054	0.029	0.0078	0.0034	0.067	0.070
New Glasgow	0.099	0.077	0.051	0.028	0.0074	0.0032	0.057	0.064
North Sydney	0.105	0.081	0.053	0.029	0.0076	0.0032	0.061	0.068
Pictou	0.098	0.076	0.050	0.028	0.0074	0.0031	0.057	0.064
Port Hawkesbury	0.102	0.079	0.052	0.028	0.0076	0.0032	0.059	0.066
Springhill	0.118	0.085	0.054	0.029	0.0077	0.0034	0.070	0.071
Stewiacke	0.107	0.081	0.053	0.029	0.0077	0.0032	0.062	0.068
Sydney	0.108	0.083	0.054	0.029	0.0077	0.0034	0.063	0.070
Tatamagouche	0.103	0.079	0.052	0.028	0.0076	0.0032	0.061	0.066
Truro	0.105	0.080	0.052	0.029	0.0076	0.0032	0.061	0.067
Wolfville	0.118	0.086	0.055	0.030	0.0078	0.0034	0.069	0.071
Yarmouth	0.137	0.094	0.057	0.030	0.0078	0.0034	0.082	0.075
Prince Edward Island								
Charlottetown	0.103	0.077	0.051	0.028	0.0074	0.0032	0.060	0.066
Souris	0.091	0.073	0.049	0.027	0.0071	0.0031	0.052	0.062
Summerside	0.133	0.089	0.055	0.029	0.0076	0.0032	0.082	0.075
Tignish	0.135	0.090	0.056	0.030	0.0076	0.0032	0.083	0.076
Newfoundland								
Argentia	0.098	0.079	0.052	0.029	0.0076	0.0032	0.056	0.066
Bonavista	0.083	0.067	0.045	0.025	0.0065	0.0028	0.047	0.056
Buchans	0.077	0.064	0.044	0.024	0.0064	0.0028	0.043	0.054
Cape Harrison	0.125	0.087	0.052	0.028	0.0071	0.0031	0.074	0.068
Cape Race	0.108	0.085	0.055	0.030	0.0080	0.0034	0.062	0.071
Channel-Port aux Basques	0.088	0.071	0.048	0.026	0.0068	0.0030	0.050	0.059
Corner Brook	0.074	0.062	0.043	0.024	0.0062	0.0027	0.042	0.052
Gander	0.077	0.064	0.044	0.024	0.0064	0.0027	0.044	0.054
Grand Bank	0.115	0.090	0.057	0.031	0.0081	0.0035	0.067	0.074
Grand Falls	0.076	0.064	0.044	0.024	0.0064	0.0027	0.043	0.054
Happy Valley-Goose Bay	0.067	0.050	0.032	0.017	0.0044	0.0018	0.039	0.040
Labrador City	0.067	0.052	0.035	0.019	0.0047	0.0020	0.038	0.042

Table C-3 (Continued)

2				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
St. Anthony	0.073	0.057	0.038	0.021	0.0053	0.0022	0.041	0.047
St. John's	0.090	0.073	0.049	0.027	0.0071	0.0031	0.052	0.062
Stephenville	0.077	0.064	0.044	0.025	0.0064	0.0028	0.044	0.054
Twin Falls	0.064	0.047	0.030	0.016	0.0040	0.0017	0.037	0.036
Wabana	0.089	0.072	0.048	0.027	0.0071	0.0031	0.051	0.060
Wabush	0.067	0.052	0.035	0.019	0.0047	0.0020	0.039	0.042
Yukon								
Aishihik	0.446	0.364	0.233	0.122	0.043	0.016	0.218	0.255
Dawson	0.396	0.277	0.168	0.087	0.030	0.012	0.185	0.174
Destruction Bay ⁽¹⁾	1.54	1.15	0.666	0.330	0.119	0.038	0.693	0.816
Faro	0.271	0.189	0.122	0.067	0.023	0.0091	0.126	0.125
Haines Junction	0.973	0.691	0.398	0.193	0.066	0.022	0.467	0.452
Snag	0.502	0.394	0.254	0.138	0.052	0.019	0.242	0.294
Teslin	0.284	0.202	0.129	0.073	0.025	0.0096	0.133	0.138
Watson Lake	0.304	0.214	0.125	0.061	0.020	0.0077	0.142	0.123
Whitehorse	0.334	0.258	0.170	0.094	0.033	0.012	0.154	0.184
Northwest Territories								
Aklavik	0.475	0.321	0.183	0.089	0.029	0.011	0.225	0.199
Echo Bay / Port Radium	0.052	0.038	0.031	0.020	0.0068	0.0031	0.030	0.032
Fort Good Hope	0.257	0.197	0.128	0.068	0.024	0.0091	0.119	0.127
Fort McPherson	0.476	0.354	0.211	0.103	0.035	0.013	0.225	0.223
Fort Providence	0.055	0.044	0.037	0.023	0.0077	0.0035	0.031	0.038
Fort Resolution	0.052	0.032	0.017	0.0072	0.0015	0.0008	0.030	0.021
Fort Simpson	0.154	0.134	0.090	0.047	0.016	0.0062	0.072	0.083
Fort Smith	0.052	0.031	0.016	0.0065	0.0013	0.0007	0.030	0.021
Hay River	0.053	0.034	0.025	0.016	0.0056	0.0025	0.031	0.028
Holman/Ulukhaqtuuq	0.057	0.040	0.025	0.012	0.0031	0.0014	0.033	0.030
Inuvik	0.308	0.223	0.139	0.072	0.025	0.0094	0.145	0.149
Mould Bay	0.21	0.120	0.070	0.037	0.010	0.0041	0.136	0.104
Norman Wells	0.688	0.445	0.238	0.105	0.031	0.011	0.340	0.256
Rae-Edzo	0.052	0.036	0.029	0.019	0.0065	0.0030	0.030	0.031
Tungsten	0.325	0.238	0.143	0.070	0.023	0.0089	0.153	0.145
Wrigley	0.653	0.421	0.224	0.099	0.029	0.010	0.319	0.241
Yellowknife	0.052	0.032	0.017	0.0070	0.0015	0.0008	0.030	0.021
Nunavut								
Alert	0.145	0.083	0.044	0.021	0.0049	0.0020	0.091	0.062
Arctic Bay	0.111	0.080	0.052	0.028	0.0071	0.0031	0.066	0.066
Arviat / Eskimo Point	0.054	0.037	0.022	0.0097	0.0021	0.0011	0.031	0.025
Baker Lake	0.068	0.048	0.029	0.014	0.0031	0.0014	0.039	0.035
Cambridge Bay/Iqaluktuuttiaq	0.059	0.041	0.025	0.012	0.0025	0.0013	0.034	0.030
Chesterfield Inlet/Igluligaarjuk	0.081	0.054	0.031	0.015	0.0034	0.0015	0.047	0.042
Clyde River /Kanngiqtugaapik	0.306	0.186	0.104	0.053	0.015	0.0056	0.195	0.162

Table C-3 (Continued)

Province and Location				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Coppermine (Kugluktuk)	0.053	0.031	0.016	0.0066	0.0013	0.0007	0.031	0.021
Coral Harbour /Salliq	0.103	0.064	0.035	0.016	0.0037	0.0015	0.062	0.048
Eureka	0.173	0.106	0.065	0.035	0.010	0.0040	0.110	0.093
lqaluit	0.087	0.065	0.043	0.023	0.0058	0.0025	0.051	0.052
Isachsen	0.256	0.171	0.102	0.055	0.016	0.0061	0.162	0.158
Nottingham Island	0.109	0.060	0.031	0.014	0.0030	0.0014	0.068	0.044
Rankin Inlet (Kangiqiniq)	0.064	0.045	0.027	0.013	0.0028	0.0014	0.036	0.034
Resolute	0.194	0.105	0.057	0.028	0.0069	0.0030	0.124	0.084
Resolution Island	0.203	0.123	0.069	0.035	0.0092	0.0038	0.128	0.102

National Building Code of Canata 2015 Volume 1, Division B

INSULATING CONCRETE FORMS
MANUFACTURERS ASSOCIATION
ICF-MA.ORG

The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canada

THE INSULATING CONCRETE FORMS MANUFACTURERS ASSOCIATION

The Insulating Concrete Forms Manufacturers Association (ICFMA) is the North American non-profit trade association for the Insulated Concrete Form industry and was founded in 2014 by a dedicated group of manufacturers with the interest of improving the quality and acceptance of Insulated Concrete Form construction.

MISSION

The mission of the ICFMA is to promote and enhance the social, environmental and economic value of insulating concrete forms in the North American marketplace.

LEARN MORE ABOUT ICFS AT ICF-MA.ORG